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Data on its own does not speak.

Emanuel Derman in
My Life as a Quant



Abstract

At least 225 000 people die in the United States every year from sudden cardiac arrest
before they reach a hospital, and an estimated 370 000 to 750 000 patients per year have
a cardiac arrest and undergo cardiopulmonary resuscitation (CPR) during hospitalisation.
Almost half of all out-of-hospital cardiac arrest patients suffer from ventricular fibrillation
(VF). Presently, resuscitation is guided by a standardised protocol (the international guide-
lines) which includes only rhythm detection for decision support. As an alternative to this
approach, an extended diagnostics can be suggested, which is primarily based on the fibril-
lation ECG and provides information on the physiological status of the individual patient.
This alternative approach promotes the development of ECG-based algorithms, resulting in
parameters which reflect the myocardial metabolism of the heart and its degree of resus-
citability. As an implication of this approach, the removal of artefacts resulting from CPR
becomes desirable.

Hence the performance of the VF ECG parameters ”mean frequency”, ”mean ampli-
tude”, and a linear combination of both is discussed with respect to their capability to predict
the success of subsequent defibrillation attempts. The parameters yield classification accu-
racies of approximately 85%. Two new algorithms for CPR artefact removal are presented
which are both based on state-space models and the corresponding Kalman recursions. The
first algorithm models the CPR part of a corrupted ECG signal as a stochastically changing
seasonal time series with an (optionally) time-dependent period. It achieves signal-to-noise
ratio (SNR) improvements of approximately 3.4 dB. The second algorithm estimates the
CPR part by an adaptive regression on lagged copies of some reference signal and achieves
SNR improvements of approximately 5.8 dB.

The ECG parameters and artefact removal algorithms are optimised and evaluated on
human and animal data which were collected at the Department of Anesthesiology and Crit-
ical Care Medicine (Innsbruck Medical University, Austria). A data management system
was developed for these recordings based on open and free software.

The thesis finally contains measurement results and a corresponding analysis of the
waveforms of various modern external biphasic defibrillators.
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Kurzfassung

Mindestens 225 000 Menschen sterben in den USA jedes Jahr an plötzlichem Herztod bevor
sie in ein Krankenhaus kommen. Geschätzte 370 000 bis 750 000 Patienten pro Jahr erlei-
den einen Herzstillstand und werden während der Einweisung in ein Krankenhaus einer
kardiopulmonalen Reanimation (CPR) unterzogen. Fast die Hälfte aller außerklinischen
Herzstillstandspatienten haben ventrikuläres Flimmern (VF). Zur Zeit wird eine Reanima-
tion nach einem standardisierten Protokoll, den internationalen Richtlinien, durchgeführt.
Diese enthalten nur die Herzrhythmuserkennung als Entscheidungshilfe. Als eine alterna-
tive Vorgehensweise könnte man sich eine erweiterte Diagnostik vorstellen, welche sich
vorwiegend auf das Kammerflimmer-EKG stützt und Information über den physiologis-
chen Zustand des individuellen Patienten liefert. Dieser alternative Ansatz verlangt nach
der Entwicklung von EKG-basierten Algorithmen, die Parameter berechnen, welche den
myokardialen Metabolismus des Herzens und den Grad der Wiederbelebbarkeit reflektieren.
Zusätzlich wird die Entfernung von Artefakten aus dem EKG, die von der CPR herrühren,
notwendig.

Die VF EKG Parameter ”mittlere Frequenz”, ”mittlere Amplitude” und eine lineare
Kombination von beiden werden im Hinblick auf ihre Fähigkeit diskutiert, den Erfolg nach-
folgender Defibrillationsversuche vorherzusagen. Die Parameter erreichen eine Klassif-
fikationsgenauigkeit von etwa 85%. Zwei neue Algorithmen zur CPR-Artefaktentfernung
werden vorgestellt. Beide basiern auf Zustandsraummodellen und den entsprechenden
Kalman-Rekursionen. Der erste Algorithmus modelliert den CPR-Anteil eines verunrei-
nigten EKG-Signals als eine sich stochastisch ändernde, saisonale Zeitreihe mit einer (op-
tional) zeitabhängigen Periode und erreicht Signal-Rauschleistungs-Verhältnis (SRV) Ver-
besserungen von etwa 3,4 dB. Der zweite Algorithmus schätzt den CPR-Anteil mittels einer
adaptiven Regression auf zeitlich verschobene Kopien eines Referenzsignals und erreicht
SRV Verbesserungen von etwa 5,8 dB.

Die EKG Parameter und Artefaktentfernunsalgorithmen werden an Human- und Tier-
daten optimiert und evaluiert, welche an der Klinik für Anästhesie und Allgemeine In-
tensivmedizin (Medizinische Universität Innsbruck, Österreich) gesammelt wurden. Ein
Datenmanagementsystem, basierend auf offener und freier Software, wurde für diese Aufze-
ichnungen entwickelt.

Schließlich enthält die vorliegende Arbeit Messergebnisse und Auswertungsresultate
der Entladungskurven verschiedener, externer biphasischer Defibrillatoren.
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Chapter 1

Introduction

1.1 Thesis Outline

The introduction presents medical background and points out two current technical chal-
lenges in resuscitation regarding ECG signal analysis. These are the removal artefacts
resulting from cardiopulmonary resuscitation (CPR) and the development of parameters
derived from the ventricular fibrillation (VF) ECG signal in order to estimate the probabil-
ity of success of a subsequent defibrillation attempt. The introductory chapter ends with a
published review about algorithms to analyse VF signals.

Part I “Data Management” deals with the general problem of computer aided (predom-
inantly ECG) data handling as experienced at the Department of Anaesthesiology and Crit-
ical Care Medicine (Innsbruck Medical University, Austria). An XML-based design of an-
notation files is presented and combined with a MySQL database and various programming
interfaces. The second chapter of Part I describes the data acquisition, the data management,
and the data post-processing in the study Defibrillation in out-of-hospital cardiac arrest pa-
tients: a comparison of the mono- and biphasic defibrillation pulses of Medical Research
Laboratories as it has been developed at the Department of Anaesthesia.

Part II “Mathematical Methods” reviews in the first chapter the mathematical principles
of stochastic time series and forecasting using general Hilbert space methods. The second
chapter is devoted to state-space models and the corresponding Kalman recursions for pre-
diction, filtering, and smoothing. Maximum likelihood and minimum mean squared error
optimisation methods are presented and adapted to the state-space structure.

Part III “CPR Artefact Removal” first presents the underlying medical and technical
problems and reviews previous work done by other research groups. Different approaches
for the evaluation of CPR artefact removal algorithms are discussed. Subsequently two new
algorithms based on state-space models of the CPR corrupted ECG signal are presented and
then evaluated on 49 datasets which are mixtures of human artefact free VF and porcine
pure CPR ECG signals.

Part IV “Rating the VF ECG signal” comprises two published papers which discuss
the quality of the VF parameters “mean frequency” and “mean amplitude”, and a linear
combination of both with respect to their capability to predict the success of a defibrillation
attempt thereby monitoring the myocardial metabolism of the heart.

Part V ends the thesis with the measurement results and a corresponding analysis of the
waveforms of various modern external biphasic defibrillators. This is done by presenting a
published paper and a yet unpublished follow-up paper.

1



2 CHAPTER 1. INTRODUCTION

1.2 Medical Background

1.2.1 Cardiac Arrest

At least 225 000 people die in the United States every year from sudden cardiac arrest
(SCA) before they reach a hospital. In addition, an estimated 370 000 to 750 000 patients per
year have a cardiac arrest and undergo cardiopulmonary resuscitation during hospitalisation.
Almost half of all out-of-hospital cardiac arrest patients suffer from ventricular fibrillation
(VF), cf. Figure 1.1. These statistics were published in [56] in the year 2001. The frequency
of cardiac death in western industrialised nations is similar to that in the United States. The
incidence of cardiac death in other countries varies as a reflection of coronary artery disease
prevalence in those populations. The trend towards increasing cardiac events in developing
nations of the world is thought to reflect a change in dietary and lifestyle habits in these
nations. In Austria the number of sudden cardiac death victims is in a range of 13 000 per
year. A survival rate of 10% to 20% is reported in five European regions [73]. A meta-
study analysing nearly 100 cardiac arrest studies found survival rates ranging from 1.6% to
20.7%, but with the majority below 10% [28]. For the US, a survival rate of 3% to 5% is
estimated [26, 27, 99].
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Figure 1.1: ventricular fibrillation ECG (porcine model)

1.2.2 The Cardiopulmonary System

The cardiopulmonary system establishes the exchange of oxygen and carbondioxide to the
body cells. It consists of the lungs (“pulmo”) exchanging oxygen and carbondioxide to
the blood and the heart (“cardio”) distributing and collecting the blood. The ECG rhythm
of a healthy heart is called “normal sinus rhythm” (NSR), cf. Figure 1.2. During cardiac
arrest, the heart stops pumping, and if resuscitative interventions are not begun within 5 to
7 minutes to restore normal electrical activity and circulation, there is little likelihood of
successful resuscitation and functional survival [151, 95]. The most common arrhythmia
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Figure 1.2: normal sinus rhythm ECG (porcine model)

causing cardiac arrest is VF, but it may also originate from ventricular and supraventricular
tachycardia, asystole, pulseless electrical activity (PEA), and arrhythmias caused by sinus
node failure or atrioventricular node disease [26, 122].

1.2.3 Cardiopulmonary Resuscitation

Cardiopulmonary resuscitation (CPR) consists of precordial chest compressions and venti-
lations. It aims to maintain artificial circulation by generation of vital organ blood flow. In
cases of asystole and PEA, CPR alone can occasionally suffice to establish return of spon-
taneous circulation (ROSC). In case of VF, delivering an electric shock to the heart, i.e.
defibrillation, is the most effective intervention [82]. International guidelines of CPR rec-
ommend the electrical defibrillation as a therapy for VF [17, 18], because besides external
thoracic compressions it is the only effective intervention, which is proved to correlate with
survival during CPR [16].

Laypersons are urged to perform so-called basic life support (BLS) which consists pri-
marily in precordial chest compressions and mouth-to-mouth ventilations. Defibrillation
with the use of an automated external defibrillators (cf. subsection 1.3.3) is also a BLS in-
tervention, in most cases provided by healthcare professionals. Paramedics and emergency
physicians perform advanced cardiac life support (ACLS) utilising drug administration and
airway management in addition to BLS interventions.

1.2.4 International Guidelines 2000

The recommended algorithms for BLS and ACLS are presented in the international guide-
lines [17, 18] and give a protocol of how to treat a patient in cardiac arrest, i.e., unconscious,
unresponsive, and without signs of life. Figures 1.3 and 1.4 depict roughly the chain of BLS
and ACLS interventions.
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Figure 1.3: The figure reviews the BLS algorithm for ambulance providers of out-of-
hospital management of patients with acute coronary syndromes. Reproduced from [17].
For a detailed description see [17, Part 3: Adult Basic Life Support. p29-71].
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Figure 1.4: The figure reviews the Universal/International ACLS Algorithm. Reproduced
from [17]. For a detailed description see [17, Part 6: Advanced Cardiovascular Life Support.
p169-184-71].



6 CHAPTER 1. INTRODUCTION

1.2.5 Myocardial Metabolism, Influence of CPR

In general, the effect of any therapy in case of cardiac arrest depends on the following
factors, cf. [51, p.10],

• cardiac aetiology: Prior heart diseases like infarction or arrhythmias influence cardiac
resuscitability.

• duration of cardiac arrest: The energy resources of the heart are gradually emptied
making resuscitation less probable.

• bystander CPR: precordial compressions and ventilations by lay rescuers may have a
positive effect depending on the quality of CPR.

These factors have an impact on the condition of the heart, i.e., the myocardial metabo-
lism. The myocardial metabolism comprises the physical and chemical processes making
energy available to the myocardium [49]. Efficient BLS and ACLS improve the myocardial
metabolism as they increase the myocardial blood flow.

In fact, several human and animal studies have shown that defibrillation can be futile and
therefore harmful, if the level of myocardial metabolism is too low. However, by reestab-
lishing a certain amount of myocardial perfusion through adequately performed CPR and
possibly drug administrations, myocardial metabolism may be improved to a level, such
that defibrillation can be successful. When the time between collapse and start of CPR is
prolonged (> 4 min.), defibrillation of out-of-hospital patients more likely results in ROSC,
if a short period (90 sec.) of chest compressions and ventilations is performed prior to
defibrillation [41]. A recent out-of-hospital study in Oslo, Norway, by Wik et al. [157]
showed, that patients with VF and ambulance response intervals longer than 5 minutes had
better outcomes with CPR first before defibrillation was attempted. Cruz, Niemann et al.
showed in animal studies, that in case of prolonged VF administration of epinephrine and
90 seconds of CPR prior to defibrillation increase the probability of ROSC significantly
[42, 113, 112].

1.2.6 Defibrillation

Only if normal or supra normal coronary blood flows are established by extracorporal circu-
lation, spontaneous reversal of VF may be possible [59]. With this exception, defibrillation
is the only option for reversing VF. If mechanical compressions are initiated within two min-
utes after onset of VF, the time interval for successful defibrillation is likely to be extended
from three to twelve or more minutes [46]. Electrical defibrillation is intended to deliver an
electrical current of sufficient intensity to depolarise ventricular myocytes, including pace-
maker cells, simultaneously. Different so-called defibrillation “waveforms” [4, 5, 6] are
still being discussed with respect to their efficacy and harmfulness, cf. Part V. The maxi-
mal electrical current delivered by a defibrillator my exceed 30 A [4, 5, 6], however, only
approximately 4% of the current actually transverse the heart [45] depending on thoracic
impedance and placement of the defibrillator’s electrodes. Cumulative unsuccessful defib-
rillation attempts may cause myocardial injury [161, 143]. Thus, it would be desirable to
deliver an electric shock only if it is supposed to restore spontaneous circulation. A key
problem is therefore whether to defibrillate or provide CPR.
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1.3 Inferring the State of the Heart

Presently, resuscitation is guided by a standardised protocol, i.e., the international guide-
lines, which includes only rhythm detection for decision support, cf. subsection 1.2.4. An
alternative to this approach would consist in an extended diagnostic procedure continuously
guided by more information on the physiological state of the individual patient, cf. subsec-
tion 1.2.5, where arguments are given supporting this approach. The treatment is decided
through a continuous analysis of physical measurements reflecting the myocardial metabo-
lism of the heart and the degree of resuscitability.

1.3.1 Key Questions

The diagnostic approach should answer to the following key questions during resuscitation
efforts

• Should the patient be defibrillated immediately or should CPR be started, as discussed
in subsection 1.2.5?

• When is the optimal time for a defibrillation attempt?1 This would prevent futile and
harmful defibrillation attempts.

• Can the effect and quality of precordial chest compressions and ventilations be quan-
tified and monitored? This would allow to give feedback to the rescuer on his CPR
efforts, such that CPR can be optimised.

• Can the effect of drug administrations be quantified and monitored?

All key questions could be answered by continuously providing one (or more) appropriate
parameters which are derived from physical measurements and reflect the actual probabil-
ity for ROSC of a hypothetical defibrillation attempt.

1.3.2 Physiological Parameters

Different invasive and non-invasive parameters have been examined with respect to their
monitoring ability of myocardial metabolism and prognostic relevance.

CPP and End-tidal CO2

Coronary perfusion pressure (CPP), for example, correlates well during CPR with myocar-
dial blood flow and outcome of resuscitation [86]. In animal [85] and human studies [116]
it has been shown that CPP correlates with ROSC and survival. However, the measurement
of this parameter is an invasive procedure since it requires placement of a central venous
catheter, which is hardly practical in the out-of-hospital cardiac arrest situation.

End-tidal CO2 varies with cardiac output [150, 66, 80, 87, 40], but has to be used with
caution, because it is influenced by the general metabolic status [150, 66, 80, 87, 40], ven-
tilation [80], the use of epinephrine [40], and time [87].

1Here, optimal means that the probability for ROSC is maximal. Other objectives such as minimal post-
resuscitation dysfunctions, early defibrillation, minimal number of defibrillation attempts could be included.
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ECG

The ECG is a non-invasive and quickly available measurement giving information about
the electrical activity of the heart [127]. An ECG lead measures the electrical potential
difference between two points of the body. Leads I, II and III are measured over the limbs:
I is from the right to the left arm, II is from the right arm to the left leg and III is from the
left arm to the left leg. From this, the imaginary point V is constructed, which is located
centrally in the chest above the heart. The other nine leads are derived from the potential
difference between this point and the three limb leads (aVR, aVL and aVF) and the six
precordial leads (V1-6). Therefore, there are twelve leads in total recording information
from particular parts of the heart. The leads measure the average electrical activity generated
by the summation of the action potentials of the heart at a particular moment in time.

The ECG rhythm of a normally operating heart is called “normal sinus rhythm” (NSR),
cf. Figure 1.2. There exist a lot of heart rhythms deviating from NSR which are called
arrhythmias [48, 131]. For a list of ECG rhythms annotated in an out-of-hospital study
being carried out in Innsbruck, Austria, cf. Tables 3.1 and 3.2.

The “ventricular tachycardia” (VT) is often the initiating rhythm of cardiac arrest. In
most out-of-hospital situations, however, the patient is past the initial phase of VT and is
in the rhythm of VF, which is treated with defibrillation. If no CPR is given, the electrical
activity of the heart disappears gradually and the final rhythm before death is termed asys-
tole, which is a (nearly) flat line in the ECG tracing and is not treated with defibrillation.
CPR and drug administration may increase circulation of blood and oxygen to the ischemic2

myocardium and might result in a conversion from asystole to VF, which then can be de-
fibrillated [102]. During asystole and VF, the heart does not contract and these rhythms are
therefore pulseless. If no mechanical activity corresponds to an existing electrical activity
of the myocardium, the resulting rhythm is called “electromechanical dissociation” (EMD)
or “pulseless electrical activity” (PEA). This rhythm often appears in the transition from VF
to asystole and is treated with medications and CPR, but does not respond to defibrillation
attempts.

Different parameters derived from the VF ECG signal have been proposed for predicting
the success of a defibrillation attempt thereby monitoring the myocardial metabolism of the
heart. The review article of Amann et al. [11], reproduced at the end of this chapter (section
1.5), summarises the different approaches published in the literature.

1.3.3 Key Problems

In recent years, automated external defibrillators (AED) have been made available for use
by the general public. These devices are commonly found in large gathering places, such
as airports, casinos, and sports stadiums. An AED diagnoses the heart rhythm through the
ECG lead of the adhesive pads and determines if a shock is needed. If necessary, semi-
automatic AEDs prompt the user to stand clear and then push a shock button to defibrillate.
Fully-automatic AEDs sound a “stand clear” alarm and then deliver the shock automatically
without the user having to push the button. If a defibrillation is not appropriate, the AED
prompts the user to determine the presence of pulse and start or continue CPR if indicated.

During CPR, chest compressions and ventilations cause artefacts in the ECG. In order
that the rhythm detection algorithms of AEDs work properly a so-called “hands-off inter-
val” is required, where CPR is stopped and the ECG is thus artefact-free. However, as a

2deficient blood supply
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consequence of this, myocardial blood flow drops and the (probability for) success of a sub-
sequent defibrillation attempt decreases [125, 53]. Thus, it would be desirable to remove
CPR artefacts from the ECG continuously during CPR administration, cf. Part III. Thereby,
continuous rhythm detection would be possible and would provide minimal “hands-off”
delays before delivering the electric countershock.

Furthermore, in case of VF, CPR removal algorithms would allow for continuous mon-
itoring of the probability for ROSC through parameters derived from the artefact-cleaned
ECG signal.

An alternative approach consists in finding VF parameters and detection algorithms,
which are insensible to CPR.

1.3.4 International Guidelines 2005

Shortly before the completion of this thesis, the AHA published new guidelines3 for CPR
and emergency cardiovascular care [20, 19, 72]. The following list summarises the major
changes.

• Chest compressions are more important than ventilations: In the first minutes of VF
SCA, ventilation does not appear to be as important as chest compressions, but it does
appear to contribute to survival from prolonged and asphyxial arrest.

• High quality CPR is emphasised. Rescuers should push hard, push fast, allow full
chest recoil, minimise interruptions in compressions, and defibrillate promptly when
appropriate.

• There was insufficient data to recommend CPR before defibrillation for all victims
of VF SCA. The data was insufficient to determine (1) whether this recommendation
should be applied to in-hospital cardiac arrest, (2) the ideal duration of CPR before
attempted defibrillation, or (3) the duration of VF at which rescuers should switch
from defibrillation first to CPR first.

• A 1-shock strategy is recommended instead of the 3-shock strategy. Furthermore,
it is recommended that rescuers resume CPR, beginning with chest compressions,
immediately after attempted defibrillation. Rescuers should not interrupt chest com-
pressions to check circulation until after about 5 cycles or approximately 2 minutes
of CPR.

• Given a lack of documented effect of drug therapy in improving long-term outcome
from cardiac arrest, drug administration is deemphasised and BLS is reemphasised.

• Studies have shown that a reduction in the interval between compression and shock
delivery by as little as 15 seconds can increase the predicted shock success. Defibril-
lation manufacturers are encouraged to develop AEDs that are capable of analysing
the heart rhythm during uninterrupted chest compressions.

All points in this list demonstrate that (1) parameters reflecting the actual probability of
ROSC, (2) reliable detection algorithms, and (3) CPR artefact removal algorithms as de-
scribed in the sections before are important issues in the improvement of current CPR tech-
niques.

3freely available at http://circ.ahajournals.org

http://circ.ahajournals.org
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1.4 Further Reading

For an account on the history of CPR it is referred to [110].
A review about algorithms to analyse ventricular fibrillation signals is reproduced in the

next section (1.5).
The doctoral thesis of Ulrich Achleitner examined different parameters derived from

porcine VF ECG signals with respect to their ability to predict defibrillation outcome and
their correlation with blood pressure and vasopressors administrations [3]. He also stud-
ied signals obtained from the open heart when manual CPR was replaced by a heart-lung-
machine.

Trygve Eftestol analysed in his doctoral thesis derived quantities of out-of-hospital car-
diac arrest ECG signals with respect to their predictive value of defibrillation success and
sketches an algorithm for CPR artefact removal [51].

Robert Tratnig examined the reliability of new and old detection algorithms for AEDs
[14, 13, 144].

The effect of drug administrations such as vasopressin and epinephrine during cardiac
arrest have been analysed by the research group of the Department of Anesthesiology and
Critical Care Medicine at the Innsbruck Medical University, Austria [152, 7, 132, 133, 12,
105, 97].

An analysis of a selection of modern biphasic defibrillation waveforms found in com-
monly available defibrillators is given in [6].
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1.5 Paper 1

The following review was published in Curr Opin Crit Care 2001 Jun;7(3):152-6, [11].

Algorithms to analyze ventricular fibrillation signals
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Abstract

Prediction of defibrillation success in order to avoid myocardial injury and performance
feedback during cardiopulmonary resuscitation (CPR) requires algorithms to analyze ven-
tricular fibrillation (VF) signals. In this report, we review investigations on different pa-
rameters of VF ECG signals including amplitude, frequency, bispectral analysis, amplitude
spectrum area, wavelets, nonlinear dynamics, N(α)-histograms, and combinations of sev-
eral of these parameters. To date, no satisfactory methods have been found which cope
with CPR artifacts, and show adequate predictive power of successful defibrillation. Usual
limitations of the studies are the small number of subjects, which preclude separation into
training and test data. Since many investigations are animal studies of untreated short VF,
results may be different for prolonged VF in humans. The universality of threshold val-
ues has to be examined, and promising new parameters have to be monitored over longer
time periods and analyzed for effects of chest compressions, ventilation and concomitant
vasopressor therapy.

Introduction

Different resuscitation strategies for prolonged VF patients are conceivable. Recent studies
suggest that a brief period of myocardial perfusion before countershock with chest com-
pressions and ventilation improves cardiac resuscitation outcome [41, 112, 42, 113]. Since
cumulative defibrillation energy resulting from futile defibrillation attempts may cause my-
ocardial injury [161], it would be important to have a noninvasive tool which permits to
predict whether a shock will cause return of spontaneous circulation (ROSC), or not.

Both invasive and noninvasive parameters have been tested with regard to their capabil-
ity to predict defibrillation success during cardiopulmonary resuscitation (CPR). For exam-
ple, coronary perfusion pressure and myocardial blood flow during CPR have been shown
in laboratory and clinical studies to be good predictors of defibrillation success. Since these
monitoring techniques require intravascular and/or intracardiac catheters that are almost im-
possible to insert appropriately during out-of-hospital CPR, these strategies are more likely
to be employed in intensive care units or CPR laboratories. In contrast, the ECG signal is a
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noninvasive and readily accessible feature of ventricular fibrillation (VF) and superior, for
example, to end-tidal carbon dioxide for prediction of defibrillation success [141].

Recent Results in VF Analysis

In this report, we will review the most important recent investigations on algorithms and
parameters to analyze VF ECG signals, including amplitude, frequency, bispectral analysis,
amplitude spectrum area, wavelets, nonlinear dynamics, N(α)-histograms, combinations of
several of these parameters, and CPR artifact removal algorithms. Careful distinction has to
be made between human and animal studies, early VF and prolonged VF, VF during CPR
and untreated VF, different lengths of time windows for time course analysis, and possible
different pharmacological administrations.

Amplitude

VF voltage or signal amplitude is usually defined as the maximum peak-to-trough VF am-
plitude in a given time window of the ECG signal [115]. Mean VF voltage is the average
of VF voltage over the chosen time interval. Prolonged VF in pigs was studied by Noc et
al. [115], where mean VF voltage was equivalent in predictive power with coronary perfu-
sion pressure. In order to eliminate CPR artifacts, frequencies <4.5 Hz were excluded by a
filtering procedure.

Early VF in dogs was investigated by Patwardhan et al. [117]. They compared the pre-
dictive power of (mean) VF voltage with the envelope of VF voltage which they estimated
using the Hilbert transform. After 10 sec of untreated VF defibrillation, shocks were de-
livered. Their results suggest that both of these parameters are not robustly correlated with
shock outcome for early VF.

Frequency

Various different parameters can be computed from the windowed Fourier transformation
(time window length may be, e.g., 10 sec) and checked for predictive power of defibrillation
outcome. Starting point for estimating median frequency, peak power frequency, edge fre-
quency, spectral flatness measure etc. is the power spectrum defined as the square of Fourier
amplitudes. Parameters computed from the power spectrum neglect phase correlations of
the harmonic components of the signal.

Early VF in dogs was examined by Patwardhan et al. [118]. They used an analysis tech-
nique based on Wigner transforms to quantify time-varying dominant frequency in ECGs
during trials of 10 and 30 seconds of untreated VF. Frequencies were estimated at 40 msec
intervals, in comparison with 3 or 10 seconds in other work. Their results suggest that
median frequency is a more robust parameter than dominant frequency.

A study by Achleitner et al. evaluated prolonged VF mean frequency and amplitude
to predict defibrillation success in a porcine CPR model using repeated administration of
vasopressin or epinephrine [7]. The signals were divided into consecutive 10 sec intervals,
and the frequency domain was restricted to the range from 4.33 to 30 Hz in order to reduce
CPR artifacts. Mean fibrillation frequency was equivalent to amplitude in predictive power,
but not quite as good as coronary perfusion pressure. Interestingly, vasopressin was superior
to epinephrine in maintaining these variables above a threshold necessary for successful
defibrillation, which reflects itself in better defibrillation success.



1.5. PAPER 1 13

A forthcoming publication by Small et al. uses two new algorithms to detect and quan-
tify change in periodicity, reduced autoregressive modeling and near orbit analysis (Small,
M., Yu, D., Harrison, R. Variation in the dominant period during ventricular fibrillation,
submitted to IEEE Transactions on Biomedical Engineering). These algorithms provided
results that were consistent with those obtained from Fourier methods, but were more reli-
able in detection of periodicities and more robust to noise.

Bispectral Analysis

Patwardhan and coworkers used the cross bispectrum to estimate the degree of phase cou-
pling among orthogonal ECGs during early VF in dogs [119]. After 10 sec of untreated
VF defibrillation, shocks were delivered. They noticed that between 200 and 1000 ms be-
fore defibrillation shock, unsuccessful defibrillation trials showed a higher mean bispectral
energy than successful defibrillation trials (p<0.05). The existence of overlap in range of
bispectral energy between successful and unsuccessful trials suggests that this parameter is
significantly correlated with shock outcome, but is not a robust predictor, i.e. does not have
a high sensitivity and specificity for early VF.

Amplitude Spectrum Area

In a porcine model of cardiac arrest, Povoas et al. analyzed the VF ECG signal during CPR
by estimating the amplitude spectrum area (AMSA), i.e. the area under the absolute Fourier
spectrum (5 sec time windows) between 4 and 48Hz [121]. An AMSA value of 21 mVHz
predicted restoration of perfusing rhythm with a positive predictive value equivalent to that
of coronary perfusion pressure and a negative predictive value of 96%. AMSA, therefore,
has the potential for guiding optimal timing of defibrillation.

Wavelets

Watson et al. report a new method of interrogating the surface ECG signal using techniques
developed in the field of wavelet transform analysis [148]. Fourier analysis and wavelet
analysis both decompose the ECG-signal with respect to basis functions. A key distinction
between Fourier analysis and wavelet analysis is that a variety of wavelet basis functions
are available (e.g., Daubechies wavelets, coiflets or biorthogonal wavelets). Hence, the most
appropriate wavelet family may be chosen for the signal under investigation. In contrast,
Fourier analysis is restricted to one basis function: the sinusoid. Applied to surface ECG
signals from a porcine experimental model of prolonged VF, three dominant ridges appear
in the wavelet transform surface through time showing similar time dependence as mean
frequency analysis. After the onset of CPR, increases in all three bands can be observed in
the scalogram.

Nonlinear dynamics

In recent publications, Small et al. present experimental evidence that the seemingly random
electrical activity during VF is nonlinear in its dynamical behavior (and possibly chaotic),
but cannot be modeled as a linear stochastic process [130, 167, 166, 129]. Their results
demonstrate that correlation dimension estimates of VF data collected from an animal study
are distinct from those expected for noise driven linear systems. Furthermore, their calcula-
tions show that VF has 80-90% low-dimensional deterministic nonlinear motion with about
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5 degrees of freedom and 10-20% high-dimensional structure (either noise or chaos). They
used VF ECG data within the first 3 minutes of cardiac arrest during which no clinical treat-
ment was applied, i.e. without influence of CPR, drugs or electrical effects on the heart. No
general monotonic trend of dimension change was found within this period.

Sherman, Callaway and coworkers examined the scaling exponent and the Hurst expo-
nent for VF waveforms [36, 128]. These parameters distinguish in a robust way between
early and late VF independent of the signal amplitude. The scaling exponent is a local
estimate of the fractal dimension of the ECG waveform and was dependent on time-order
of the data. Hurst exponents in swine VF demonstrate similar time dependence as known
parameters which describe the dominant period of animal VF [33, 34, 50].

N(α)-Histograms

Little is known about the relation between the degree of cardiac disorganization, and the
success rate of defibrillation therapy. The method of N(α)-histograms [10] is a strategy to
estimate the degree of randomness in signals. In a forthcoming publication of prolonged
VF CPR in pigs, Amann et al. compare the quotient histogramstart/histogramwidth with
mean fibrillation frequency [9]. A more irregular VF ECG-signal as reflected by a higher
value of histogramstart/histogramwidth was associated with significantly increased defibril-
lation success, whereas more regularity of ventricular fibrillation was associated with poor
defibrillation success. A remarkable feature of the N(α)-technique is given by the fact that
it does not use any filtering algorithm to eliminate the CPR artifacts.

Combination of Several Parameters

Eftestol et al. studied median frequency, peak power frequency, spectral flatness, and energy
in VF ECG signals prior to 868 defibrillation shocks in 156 patients with out-of hospital
cardiac arrest [52]. They generated different secondary decorrelated feature sets from the
4 original spectral features using principal component analysis. To ensure reliability, the
data was split into training and test sets. Following the advice of the highest performing
classifier, which corresponded to the combination of two secondary features, 328 of 781
unsuccessful shocks would have been avoided, while seven of 87 successful shocks would
not have been given. According to Eftestol et al., the low specificity and positive predictive
value indicates that other features should be added. However, in comparison to a similar
study done by Brown et al. [32] with a smaller number of data, the study by Eftestol et al.
gave poorer predictive potential.

In this context, we recall the interesting investigations of Monsieurs et al. who combined
VF amplitude and the number of base-line crossings per second in human VF ECG signals
into one parameter [108]. In this study, CPR was interrupted in order to avoid CPR artifacts.

CPR artifact removal algorithms

Periodic chest compressions of CPR may interfere with the ECG signal recording, affect
the extracted parameters thereof, and finally, lead to incorrect prediction of countershock
outcome. Though interrupting CPR in humans for a brief time period results in acquisition
of reliable parameters, it shortens the period of vital myocardial perfusion [58, 108, 125].
Different attempts have been made to reduce such artifacts. Restriction to a subband of
the frequency domain analysis unfortunately eliminates almost all predictive parameters for
human VF-ECGs, since the fibrillation frequency of humans is lower than the fibrillation



1.5. PAPER 1 15

frequency of most animals [115, 136, 138]. Using an adaptive multichannel Wiener fil-
ter, one can construct an estimate of the CPR artifact signal, which subsequently can be
subtracted from the noisy human ECG signal [1]. Finally, wavelet transform techniques
constitute promising methods for ECG signal filtering [148]. In contrast to these filtering
techniques, N(α)-analysis of ECG signals as used in the forthcoming publication by Amann
et al. does not use any filtering procedure to eliminate the CPR artifacts.

Discussion

(Mean) VF voltage has the disadvantage of depending on the direction of the main fibrilla-
tion vector and therefore, is subject to a great interindividual variety. Nevertheless, in many
studies (mean) VF voltage has been shown to reflect vital organ blood flow, myocardial en-
ergy metabolism, defibrillation success, and time elapsed since collapse [33, 115, 136, 35,
44, 114, 149].

Median VF frequency has been shown in several clinical studies and animal experiments
to be a reliable noninvasive variable which can be used to predict defibrillation success
[7, 115, 141, 33, 34, 32, 108, 136, 138, 38, 103, 134, 137, 139, 140].

Pharmacologically induced changes in defibrillation success are reflected in a corre-
sponding different time course of frequency [104]. Frequency characteristics are greatly
altered by lignocaine (reducing dominant frequency through the 3 min period of analysis)
and verapamil (increasing dominant frequency), but remain almost unchanged by propra-
nolol and bretylium [39]. A study by Martin et al. showed that administration of nifedipine
prior to VF maintained high (dominant) frequency in dogs over 3 min, preserving myocar-
dial energy stores and increasing recovery chance after defibrillation [62, 104]. Therefore,
in this study, the cardioprotective effect and high defibrillation success are reflected by a
high (dominant) frequency.

Hence, spectral estimates such as median or dominant frequency have successfully been
applied to show time-dependent trends in VF signals, correlations with different drugs, and
defibrillation outcome. Unfortunately, they can not successfully be applied when CPR-
related artifacts interfere with the VF-ECG. For most animal experiments, the first three
overtones of CPR responsible for most of the artifacts can be eliminated by employing a
lowpass filter at 4.3 Hz. For human VF-ECGs, such filtering procedures should not be
applied, since the fibrillation frequencies are lower, and overlap with interference signals
due to mechanical CPR.

Bispectral analysis offers the possibility of investigating phase correlations between two
different leads which are neglected by standard spectral estimates. It would be interesting to
compute bispectral energy for prolonged VF, and to analyze effects of chest compressions,
ventilation and concomitant vasopressor therapy. Since high phase coupling indicates a
higher degree of regularity of the fibrillation signal, Patwardhan’s result that high phase
coupling corresponds to low fibrillation success could be reformulated by stating that ”the
more regular a fibrillating heart behaves, the less it can successfully be defibrillated.” This
is an interesting new aspect in the context of parameters predicting defibrillation success,
and is related to the results from N(α)-analysis. Namely, N(α)-analysis is able to extract
information (e.g., on randomness of ECG-signals) from ventricular fibrillation ECG-signals
(from a single lead instead from two different leads), and predict defibrillation success dur-
ing CPR.

Investigations of generic character have helped to clarify the question to which extend
VF is a random and/or a deterministic time series. The results of Small et al. [130, 129,



16 CHAPTER 1. INTRODUCTION

167, 166] suggest the use of nonlinear modeling techniques to characterize the dynamical
behavior of VF. Parameters of such techniques have to be found which monitor the dynamic
changes of the state of the heart within longer observation periods, and effects that are due
to clinical treatment. The effects of chest compressions, ventilation and concomitant vaso-
pressor therapy on the complexity of VF ECG-signal should be evaluated, and the predictive
power of parameters has to be tested.

The idea of combining the aforementioned and possible new parameters to a new and
better performing parameter set is interesting, and has to be pursued.

Conclusions

Usual limitations of the studies are the small number of animals or patients, which precludes
separation of the group into training and test data: this means that “best-fit” threshold values
are used in prediction which tend to yield artificially good sensitivity and specificity. In
this case, the method needs to be applied to a new test set of data to see how much of
its performance degrades. Re-exploration of data seems to be an interesting idea in this
context. A database of collected human and animal ECG signals could be useful in order
to re-examine different methods. We recommend data quality guidelines of 1kHz sampling
rate and 12 bit amplitude resolution.

The universality of threshold values has to be examined. This means that parameters
may have different threshold values for prediction of defibrillation outcome depending on
pharmacologically treatment, age, body temperature, and other factors.

Implementation of the methods under discussion in out-of-hospital CPR is most likely
hindered by CPR artifacts, and the technical feasibility of computing the parameter values
online. For example, most processing units in common defibrillators are too slow to com-
pute a Fourier transformation of the ECG signal within appropriate time. This could be
circumvented by using the number of base-line crossings per second instead [108], or by
transferring the data to a data processing center which in turn sends the parameter values
back.

Recommended reading

Papers of particular interest, published within the annual period of review, have been high-
lighted as:

∗ indicating that this paper is “of special interest”, and
∗∗ indicating that this paper is “of outstanding interest”.

∗∗ [42] An excellent laboratory investigation which indicates that administration of epi-
nephrine and CPR preceding countershock of prolonged (>5 min) VF significantly
improves cardiac resuscitation outcome compared with immediate countershock.

∗∗ [113] This nice animal study shows that CPR preceding countershock of VF of 5 minute
duration does not improve the response to the first shock, decrease the incidence of
postshock pulseless electrical activity, or the rate of return of circulation.

∗∗ [115] In this excellent animal study, mean voltage of prolonged VF was equivalent
in predictive power with coronary perfusion pressure. The data was divided into a
derivation, and a validation group.

∗∗ [118] In this fine animal study of early VF, the results suggest that median frequency is
a more robust parameter than dominant frequency.
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∗ [7] A porcine CPR model of prolonged VF which showed that vasopressin was superior
to epinephrine in maintaining median frequency above a threshold value necessary
for successful defibrillation.

∗∗ [119] An excellent animal study which uses a cross bispectrum to estimate the degree
of phase coupling among orthogonal ECGs during VF in dogs. This is a promis-
ing approach, since to date only single lead ECG signals were examined, and phase
correlations were neglected in spectral analysis.

∗ [121] This is the first publication worldwide presenting the “amplitude spectrum area”
parameter.

∗∗ [148] This is the first publication to date using wavelet transform techniques in order to
investigate VF ECG signals.

∗∗ [130] Small et al. investigate the question to which extent VF is a random and/or a deter-
ministic time series. Their impressive results suggest the use of nonlinear modeling
techniques to characterize the dynamical behavior of VF.

∗∗ [167] Calculations in this nice animal study show that VF has 80-90% low-dimensi-
onal deterministic nonlinear motion with about 5 degrees of freedom, and 10-20%
high-dimensional structure, indicating either noise or chaos.

∗∗ [166] In this very good animal study Yu et al. find that although there is no general
trend of dimension change in deterministic dynamics, periodicity analysis reveals
additional time-dependent structure in early VF.

∗∗ [129] When analyzing early VF in pigs, Small et al. found that data could not be ade-
quately described by a linear stochastic model.

∗∗ [36] This publication presents a new measure, called the scaling exponent, describing
VF waveform and distinguishing between early and late VF.

∗∗ [128] Using human and animal data, Sherman et al. nicely show that Hurst exponents
and self-similarity dimensions are correlated with the duration of VF.

∗ [10] In this investigation, the width of N(α)-histograms was sufficient to distinguish be-
tween a vasopressin and a placebo group during a porcine model of CPR.

∗ [9] In this publication of prolonged VF CPR in pigs, Amann et al. compare the quotient
histogramstart to histogramwidth with mean fibrillation frequency. A remarkable
feature of the N(α)-technique is given by the fact that it does not use any filtering
algorithm to eliminate the CPR artifacts.

∗∗ [52] In this impressive human study, four spectral features of ECG signals prior to 868
shocks were combined to generate different secondary decorrelated feature sets us-
ing principal component analysis. Special attention is made on separation between
training and test data.

∗∗ [1] Using an adaptive multichannel Wiener filter, Aase et al. construct an estimate of
the CPR artifact signal, which subsequently can be subtracted from the noisy human
ECG signal.
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2.1 Introduction

Data exchange between different tools for data analysis and data manipulation is a com-
mon problem: different applications use different and often proprietary and undocumented
formats for data storage.

In the last years a heap of data has been collected at the Department of Anaesthesiol-
ogy and Critical Care Medicine (Innsbruck Medical University, Austria). This comprises
predominantly animal data recorded during cardiac arrest experiments, so-called TOP-data.
Recordings of medical parameters (ECG, EEG, CO2, VOC,...) at humans, defibrillator
waveform measurements, and foreign data not recorded at the department extend the TOP-
data collection. Keeping a survey over this heterogeneous collection is getting an ever more
delicate task. Furthermore, the different formats of the (annotation) data results in an abun-
dance of programs to be written in order to process these different files. It was therefore
decided to construct a common and extensible annotation data format which should fulfil
the following demands:

21
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• It can be ”easily” processed by many different applications and programming lan-
guages (Matlab, Perl, PHP, Java, R, editors, ...).

• The annotations supply enough information for reading the corresponding (e.g. bi-
nary) measurement data file(s).

• The annotation files can be ”easily” parsed in order to feed a database with (parts of)
their information.

In this sense, an annotation file should serve as a mediator carrying structured information
about a single data set.
Secondly, a database shall be designed, which supplies the following services:

• Structured organisation of the data collection: classification into studies and groups,
assignment of outcomes, settings of the recording etc.

• Survey of collected data: easy browsing through the database according to different
angles.

• Query the database to find data sets with given properties.

Finally, various scripts and applications have to be written to generate, edit and parse the
annotation files, such that the different applications are able to read and write the data and
interact among each other.

2.2 Structure of Data Sets

The aim of this section is to answer the question ”Which set of information entities shall be
called one data set, and how shall it be structured?”. The following section exemplifies the
TOP-data acquisition. However, it can be easily extended to the other data sets mentioned
in the introduction.

2.2.1 Description of Data

The TOP-data collection consists of recordings which were made during animal experi-
ments. Identically designed animal experiments belong to a determined animal group of
at least one determined animal study. For one animal there are typically two or more tem-
porally separated records, a so-called baseline and the experiment itself. The latter can
be split into various parts (computer breakdown, division into smaller data files,...). Each
record comprises the temporal acquisition of different parameters, so-called channels (var-
ious ECG leads, invasive blood pressures, blood flows, ...). The recordings originate from
different medical devices: Hellige or Siemens ECG and IBP monitor, blood flow measuring
devices, etc. Typically, the measurement values for one recording are stored in one data file
(binary or ASCII). However, in the general case, more than one data acquisition devices are
used to record the various parameters. This results in multiple data files for one recording
episode (i.e. a record), which start and end at different absolute times.

Chronological Course of an Experiment:

The following diagram (Fig. 2.1) illustrates the above described chronological course of an
experiment.
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Figure 2.1: chronological course of an experiment

2.2.2 Division and Structure of Data Sets

A data collection can not only comprise data files containing the recorded measurement
values, but must also include meta files - typically text files - describing and annotating
the data files, i.e. the format of the data file, sampling rate, the setting of the experiment,
information about the subject (animal or human) of the experiment, information about the
studies and groups to which the experiment belongs, events which occurred in the course of
the experiment, persons who are connected to the experiment, etc. While, in the case of the
TOP-data collection, the data files have a size in the range of megabytes, annotation files
are much smaller and in the range of kilobytes.

Defining a data set

An annotation file should contain all information belonging to a chosen set of data files. The
annotation file together with the chosen set of data files then defines a data set. We have
chosen all data files of an animal experiment to be the above mentioned starting point for
a data set.

2.3 Demands

This section summarises the demands on the structure for annotation files and the charac-
teristics of a database which shall be fed by the annotation files.

2.3.1 Annotation Files

• Extensibility: The information of an annotation file should be structured in a well
designed way, such that this structure can also be used and extended for other data
collections.
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• Accessibility: Annotation files should be easily processable by applications (in order
to read the corresponding data files correctly, fill a database by parsing all annotation
files, etc.)

2.3.2 Database

• Browse: Applications accessing the database should provide the possibility to browse
through the database, in order to get a survey of the data collection.

• Query: Applications accessing the database should provide the possibility to submit
queries in order to find data sets with given properties.

• Accessibility: The database should not only be accessible from the computer where
it is installed, but also from remote computers.

• Interfaces: Interfaces to the database should be provided for a variety of applications
(Matlab, Perl, PHP/web-server, ODBC, R, MS-Excel, MS-Access, SPSS...).

2.3.3 General Considerations

• Open Format: Annotation files (such as data files) should be encoded in a non-
proprietary way.

• Availability: The database software and its related applications should be free of
charge.

2.4 Implementation

This section presents how we actually implemented the demands described above.

2.4.1 Annotation Files

We decided to fulfil the above mentioned demands on annotation files by using XML files
[160]. The Extendible Markup Language (XML) is a physical data format allowing to
enrich data with structure and meta-information. The W3-consortium [159] writes

Extensible Markup Language (XML) is a simple, very flexible text format de-
rived from SGML (Standard Generalised Markup Language: ISO 8879). Origi-
nally designed to meet the challenges of large-scale electronic publishing, XML
is also playing an increasingly important role in the exchange of a wide variety
of data on the Web and elsewhere.

We already described the relations among data files and records of a data set (cf. Fig. 2.1).
Besides annotating records including events, data file formats, etc., the XML file of a data
set has to refer to the studies and groups it belongs to (Fig. 2.2). Finally, the XML file has to
include information about the subject (animal or human) of the experiment and the persons
who are connected to the experiment. The appendix (Figures 2.5 - 2.7) includes a prototype
of an XML annotation file.

http://www.w3.org/XML/
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Figure 2.2: relations between studies, groups, and experiments

2.4.2 Database Design

We decided to use a MySQL database for implementation. The appendix (Figures 2.8 and
2.9) includes the SQL generation code for the tables included in the database, and figure 2.3
depicts the relations among these tables.

2.4.3 APIs

This subsection illustrates the APIs (Application Program Interfaces) between the XML
annotation files, the database, Matlab, and an Apache webserver. Figure 2.4 shows a first
overview. The XML annotation files are parsed by a Perl script which then inserts the
database-relevant information into the MySQL-database. There are three XML extra files
(studies.xml, persons.xml, queries.xml) which contain information about studies, persons
and query templates (cf. section 2.4.3), which are not included in the XML annotation files.
This information is also imported into the database by a Perl script. Matlab can access
the database by two means: functions from the Database Toolbox and by launching Perl
scripts from the Matlab command by using the perl command. The Matlab functions
xmlread and xmlwrite,which use the Java DOM packages included in Matlab, are
used to transfer the XML-structure to and from a Matlab-structure variable. The data files
to which the annotation files refer are read with data file specific Matlab functions (fread,
textread, etc.). PHP scripts can easily access the MySQL database by its functions and
hence PHP enables the programming of dynamical web pages for browsing and querying the
database. Finally, there are the cost-free software tools mysqlcc (MySQL Control Centre)
and phpMyAdmin, which provide a variety of options to access the MySQL-database.

Query Templates

The TOP-database includes a special table called queries. This table lists SQL query tem-
plates which can be used by any application which can connect to the database. The tem-

http://www.mysql.com/
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Figure 2.3: relations among tables of the TOP-database
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Figure 2.4: APIs
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plates provide the possibility to submit queries without knowing the internal structure of the
database (relations of tables, fieldnames,...).
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2.5 Appendix
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Figure 2.5: page 1 of a sample XML annotation file
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Figure 2.6: page 2 of a sample XML annotation file
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Figure 2.7: page 3 of a sample XML annotation file
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!�8C��G�!HE�;�c�9 c�d�e f)("+gf"�D/"/h-��H+"(CiJ0Cf _ '��Cj���f)+ <
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*H'�0CjC-�'YxXy��zx ` #�; @57 !�F"c�9 s
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Figure 2.8: page 1 of the SQL generation code for the TOP-database
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Figure 2.9: page 2 of the SQL generation code for the TOP-database
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3.1 Introduction

In August 2003 Medical Research Laboratories (MRL, Buffalo Grove, Illinois, USA, mean-
while part of Welch Allyn) and the Department of Anaesthesia, Innsbruck Medical Univer-
sity (Austria), Division of Experimental Anaesthesia (represented by Univ.-Prof. Dr. Anton
Amann and Univ.-Doz. Dr. Michael Baubin) have started the study Defibrillation in out-
of-hospital cardiac arrest patients: a comparison of the mono- and biphasic defibrillation
pulses of Medical Research Laboratories. This study comprises the comparison of MRL
mono- and biphasic defibrillation pulses and the collection of ECG-data of out-of-hospital
cardiac arrest patients. MRL supplied the Innsbruck emergency medical system (EMS)
with 4 fully equipped ”PIC” defibrillators with the possibility to record 2-3 ECG leads at
375 Hz sampling frequency. From August 19th 2003 to January 15th 2004 the two Inns-
bruck EMS-cars were equipped with identically looking defibrillators, one monophasic and
one biphasic. Both defibrillators were used at the same escalating energy levels (200J - 300J
- 360J). After January 15th 2004 only biphasic defibrillators have been used.

This chapter describes the data acquisition, the data management, and the data post-
processing in the above mentioned study as it has been developed at the Department of
Anaesthesia, Innsbruck Medical University, Austria. This comprises the automated transfer
of the data collected by the defibrillators on an internet server, the acquisition of patient
related data via a web-interface and a database on the above mentioned internet server, the
transformation of the MRL proprietary data format to XML-based data sets, and custom
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data card ftp upload
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Figure 3.1: data flow of raw data acquisition

made Matlab software for editing and analysing these data sets. The intent was to provide
the technical means to back up the two main aims of the study:

• The collection of patient related data of out-of-hospital cardiac arrests in order to
compare the mono- and biphasic defibrillation pulses within the scope of a statistical
analysis.

• The collection of annotated ECG-data of out-of-hospital cardiac arrest patients in
order to analyse it with various mathematical methods in view of the predictability
of defibrillation success and feedback for the advanced cardiac life support (ACLS)
efforts of the physician.

3.2 Raw Data Acquisition

Figure 3.1 sketches roughly the raw data acquisition flow from the out-of-hospital setting to
the EMS base and finally to the laboratory.

3.2.1 Data Card Management

The defibrillators are always loaded with data cards, which have a of storage capacity 8
MB. Thus, neither the physician nor his paramedic has to bother about inserting a data card,
when they arrive at a cardiac arrest patient. Any time the defibrillator is switched on, all
tracings of the defibrillator’s display together with annotations are saved on the data card in
terms of an incident. This are at most three tracings The defibrillator has to be configured
deliberately to record all tracings, as the default mode is to record only the first tracing of
the display, which is always an ECG lead. After having used the defibrillator, when the
physician returns to the EMS base, he plugs the data card into the card reader, no matter if
he has treated a cardiac arrest patient or not. The data is read off the card and the card is
cleared, now ready for new use. Custom made software on the computer, on which the card
reader is installed, continuously checks the folder, where the data is transfered to by the card
reader. If there is new data, an FTP upload to the server in the laboratory is launched. In
this way, one can remotely keep track of new card data, and all card files (extension *.crd)
are automatically collected at a central server.
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3.2.2 Management of Patient Related Data

Besides uploading the annotated card data, the physician has to fill in an online question-
naire about patient related data, which is not contained on the data cards. This includes

• administrative information: name of the emergency physician, the emergency car,
mission number, location of the emergency, start time

• general patient data: initials, sex, date of birth, (estimated) height, (estimated)
weight

• anamnesis: known diseases, cerebral ability before the cardiac arrest, pregnancy,
former cardiac arrests, estimated reason for actual cardiac arrest

• CPR management: time of cardiac arrest, CPR and defibrillation by laypersons,
CPR and defibrillation by paramedics, first registered ECG rhythm

• time course of CPR by the emergency physician: arrival of emergency physi-
cian, intubation, intravenous access, defibrillation series (pre and post rhythm of each
shock), drug administrations

• result of reanimation efforts: duration of spontaneous circulation, if so, together
with blood pressure, heart rate, possibly more drug administrations, and admission to
hospital, (technical) complications

All possible events listed in the questionnaire can be completed by a time specification. Al-
though the annotations of the card data include the times and energies of all defibrillations,
we decided to comprise defibrillations in the questionnaire, as this gives the physicians the
possibility to document pre and post rhythms of the shocks, which in turn is highly use-
ful for the data analysis. A copy of an empty questionnaire can be found in the appendix
(Figures 3.3 - 3.6).

The computer at the laboratory provides a so-called LAMP system, i.e. a Linux op-
erating system, an Apache web server, and a MySQL database server together with PHP
(or Perl, or Python). Every emergency physician at the Department of Anaesthesia has
got a username and a password to log into the PHP-webpages and insert data into a newly
generated questionnaire. The physician can keep the documentation disclosed in order to
complete it at a later login. This may happen, when the physician has to stop filling in
the questionnaire because of a new emergency case, or because certain information about
the patient is not available at the time. However, the documentation has to be completed
sometime, and the physician can then close the questionnaire by clicking a certain button.
However, as long as certain fields in the questionnaire are empty or not filled in correctly,
the PHP page refuses the closing of the questionnaire. Blinking red buttons appear at the
beginning of the incomplete or erroneous lines, cf. appendix (Figures 3.3 - 3.6).

The LAMP system also includes user administration facilities. The following different
permissions can be granted to users:

• permission to change his own password

• permission to add new users

• permission to administrate his/her added users

• permission to add new data and edit own disclosed data
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• permission to add new data and edit all disclosed data

• permission to delete disclosed data

• permission to view closed data

• permission to edit closed data

The usage of an online form with registered users as outlined above may appear like
breaking a fly on the wheel, however, once constructed and at work, it provides a series of
advantages compared to a ”paper study”:

• In contrast to paper forms, there are no badly readable entries.

• The physician can fill in the form from anywhere1, all he needs is an internet browser.

• It can be clearly tracked back who generated a documentation at which time and who
edited the documentation at last and at which time.

• User administration facilities are difficult to establish for ”paper studies”.

• The hardware costs are minimal2. The software costs are zero, thanks to GNU and
Linux.

• Somewhere along the way, the data of paper forms have to be typed tediously into a
computer. Storing the patient related data via a PHP-form into a MySQL data base
provides a good starting point for later statistical analyses with various software.

• Once a LAMP online system is constructed, a modified copy of it can easily be used
contemporaneously for other studies.

It has to be noted, that the emergency physicians at the Department of Anaesthesia have to
fill in a so-called NaCaX-protocol and a so-called reanimation protocol additionally to the
MRL-online questionnaire. These two information sources are accessible for later correc-
tions and comparisons.

3.3 Data Post-Processing

3.3.1 Transformation to XML-based Data Sets

The data cards of the MRL defibrillators store tracings and annotations in an MRL propri-
etary data format. The aim of the ECG-data acquisition is, however, to process and analyse
the data by mathematical software such as Matlab, Octave, R, etc. This requires the file
format of the data to be known. MRL kindly provided us with C-program code, such that
software, named mrl2bda, could be made, which can transform a *.crd-file of the data
cards into an (*.xml, *.bda) pair of files.

XML annotation files have already been discussed in chapter 2. The *.bda extension is a
custom invention and is used at the Department of Anaesthesia to name a special binary file
format to code transient recordings, e.g. of ECG leads, invasive blood pressures, EEG leads,

1For security reasons, the range of IP addresses from, which the online pages are reachable, has been
restricted.

2An ”old” Pentium II together with an 80 GB hard disk is in use for the study in discussion.
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blood flows, defibrillation pulses, etc. This binary data type stores the samples of generally
multiple channels of transient recordings sequentially in float32 or float64 format. The
channels have to be recorded at a specified common sampling rate, such that a well-defined
time vector can be associated with the different channels. The same number of samples
is stored for every channel. Figure 3.2 shows the structure of the *.bda file format. The

etc.

time= 0 time= 1*SI time= 2*SI

SI ... sample interval

beginning of the file

Sequence of samples in a *.bda file with 3 channels

of channel 1
sample 1

of channel 2
sample 1

of channel 3
sample 1 sample 2

of channel 1
sample 2

of channel 2
sample 2

of channel 3
sample 3

of channel 1

Figure 3.2: structure of the *.bda file format

sampling rate and the floating point format of a *.bda file are not coded in the file and
have therefore to be annotated externally, e.g. in the XML annotation file. The *.bda file
format saves disk space and the data can be quickly and easily read and written by standard
C-commands, which also appear in Matlab (fread,fwrite).

Every time an MRL defibrillator equipped with a data card is switched on, a new so-
called incident is launched on the data card. When the defibrillator is switched off again,
the incident is concluded. The program mrl2bda now transforms every incident of a data
card to an (*.xml, *.bda) pair of files. The BDA-file stores the different ECG leads and the
other channels, which have been selected for display on the MRL defibrillator during the
incident, as separate channels. The number of channels in the BDA-file therefore depends
on how often the emergency physician or the paramedic has changed the display channels
on the defibrillator.

In order to eliminate artefacts in the channels, the mrl2bda program replaces the
neighbourhood of marginal sample values, i.e. minimal and maximal amplitudes, by NaN
(not a number) values in the BDA-files.

In the general case, the defibrillator is switched on and off more than once during the
course of a cardiac arrest emergency. The resultant (*.xml, *.bda) pairs of the different
incidents have to be merged to one XML-based data set consisting of one XML-file and the
different BDA-files. The XML-file refers to the BDA-files of the different, chronologically
separated, incidents as records, cf. chapter 2.

Finally, in order to fulfil the demand, that the XML-file should contain all necessary
meta data of a data set, the patient-related information collected with the PHP-online-forms
has to be inserted into the XML-file. Therewith, the transformation of cardiac arrest emer-
gencies to XML-based data sets is completed.

3.3.2 Editing XML-based Data Sets and Data Analysis

After having transformed the card data from the MRL proprietary data format to XML-
based data sets with open file formats, the data is now ready to be processed by mathematical
software such as Matlab, for example. A graphical user interface (GUI) called booka has



38 CHAPTER 3. THE MRL HUMAN STUDY DATA

been programmed to view the transient recordings of the MRL defibrillator and edit events.
Figures 3.7 and 3.8 in the appendix show a snapshot of the main interface and the event
editing window, respectively.

The analysis of the data with various mathematical methods in view of the predictability
of defibrillation success requires to know the pre and post defibrillation rhythms of the
heart. Therefore, the event edit interface offers the possibility to choose from a list of ECG
rhythms, which is explained in tables 3.1 and 3.2.

no information with pulse without pulse
about pulse

VF
VT VTwp pVT

PEA
VB VBwp pVB

A
NSR NSRwp pNSR
OAR OARwp pOAR
PM PMwp pPM

Table 3.1: List of ECG rhythms

A . . . asystole
VF . . . ventricular fibrillation
VT . . . ventricular tachycardia
PEA . . . pulseless electrical activity
VB . . . ventricular bradycardia
NSR . . . normal sinus rhythm

(> 10 seconds)
OAR . . . other atrial rhythm
PM . . . pacemaker
Xwp . . . X with pulse
pX . . . pulseless X

Table 3.2: Legend for list of ECG rhythms

In practice, a physician - preferably the emergency physician, who recorded the data -
has to go through the data set and determine all pre and post defibrillation rhythms, probably
supported by the patient related data together with the NaCaX-protocol and the reanimation
protocol, cf. 3.2.2.

3.4 Appendix
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    Benutzer:  Klaus Rheinberger    

Eingabeformular zur MRL Studie der Univ. Klinik für Anästhesie, Innsbruck

Einschlußkriterium:
außerklinischer Patient mit Kreislaufstillstand, der mit einem MRL-Defibrillator defibrilliert wurde
Ausschlußkriterien:
es wurde kein MRL Defibrillator benutzt

Zeiteingaben:
Die erste Zeiteingabe muß im Format "Jahr−Monat−Tag Stunde:Minute" erfolgen. Bei allen weiteren Zeiteingaben kann man das
Datum bzw. auch die Stunde weglassen, welche dann automatisch beim "Speichern" ergänzt werden.

Speichern:
Eingegebene Daten werden erst beim Anklicken eines "Speichern" Knopfes gespeichert. Wenn man also das Formular ohne zu 
Speichern verläßt, gehen neu eingegebene Daten verloren.

Fehler:
Fehlende oder fehlerhafte Angaben werden nach dem ersten Speichern mit einem blinkenden roten Punkt markiert.

Speichern  Speichern und Beenden  Abbrechen

Notarzt Dr. Hannes LienhartDr. Hannes Lienhart

Rettungsmittel NEF StadtNEF Stadt

Einsatznummer
 

  

z.B.: 1-25-xxxxxx, wobei 25 die Nummer des Fahrzeugs und
xxxxxx die 6-stellige von der Einsatzzentrale zugewiesene 
Nummer ist

Einsatzort
Ort   

Straße   

Einsatzbeginn  jjjj-mm-dd hh:mm

Patientendaten Speichern  Speichern und Beenden  Abbrechen

Name (nur Initialen)  

Geschlecht  männlich  weiblich  

Geburtsdatum    jjjj-mm-dd

Gewicht/Größe (geschätzt)   kg     cm

Anamnese Speichern  Speichern und Beenden  Abbrechen

bekannte Vorerkrankungen
 Z.n. ACS (akutes Coronarsyndrom = instabile AP/AMI)
 andere KHK (koronare Herzkrankheit)
 Z.n. Bypass OP
 Z.n. anderer Herzoperation
 Herzrhythmusstörungen
 Herzinsuffizienz
 Cardiomyopathien
 Vitien (Herzklappenfehler)
 Pacer (Herzschrittmacher)
 AVK (arterielle Verschlußkrankheit)
 Hypertonie (Bluthochdruck)
 Venenthrombose
 Diabetes mellitus
 Hyperlipidämie
 Adipositas
 Asthma
 COPD (chronische obstruktive pulmonale Erkrankung)
 Lungenembolie
 Niereninsuffizienz
 Dialysepatient
 Leberzirrhose
 C2-Abusus (Alkoholiker)

0 0

Figure 3.3: page 1 of the MRL online questionnaire
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 Nikotin-Abusus
 i.V. Drogen-Abusus

zerebrale Leistungsfähigkeit vor
dem Kreislaufstillstand

  
 gut

 mittel

 schlecht

 Koma

    

gut: Bei Bewußtsein, aufmerksam, arbeitsfähig. Der Patient ist in der Lage ein normales
Leben zu führen. Eventuell milde neurologische und psychologische Defizite (milde
Dysphasie, nicht störende Hemiparese).
mittel: Bei Bewußtsein. Der Patient ist in der Lage Teilzeitarbeit in einer geschützten
Werkstätte zu verrichten und kann einfache Dinge des täglichen Lebens bewältigen
(kann sich selbst anziehen, Mahlzeiten zubereiten, öffentliche Verkehrsmittel benutzen).
schlecht: Bei Bewußtsein. Der Patient ist wegen seiner eingeschränkten Hirnfunktion
von der Hilfe anderer abhängig. Kognitionsfähigkeit zumindest eingeschränkt.
Koma: Nicht bei Bewußtsein. Keine Wahrnehmung der Umgebung. Keine verbale oder
psychologische Interaktion mit der Umwelt möglich.

schwanger nein   ja   unbekannt

früherer Kreislaufstillstand nein   ja   unbekannt      (wenn ja, dann bitte wann   'Jahr' oder
'Jahr-Monat' oder 'Jahr-Monat-Tag'

vermutete Ursache des aktuellen 
Kreislaufstillstandes

unbekannt
kardial bedingter Kreislaufstillstand:

Herzinfarkt
primäre Rhythmusstörung
Myokarditis

nicht kardial bedingter Kreislaufstillstand:
Lungenembolie
Intoxikation
primäres zerebrales Ereignis
Kreislaufstillstand nach Trauma (inkl. Erhängen,...)
hämorrhagischer Schock
Asphyxie (Ertrinken,...)

CPR Management Speichern  Speichern und Beenden  Abbrechen

Uhrzeit ('Minuten' oder 'Stunden:Minuten' oder 'jjjj-mm-dd hh:mm')

 Zeitpunkt des Kreislaufstillstandes
 ziemlich genau  eher ungenau  

Reanimationsmaßnahmen durch Laien

CPR durch Laien

Defibrillation durch Laien (PAD):   Anzahl Schocks  

 keine Laien-Defibrillation
 Fred Easy
 Lifepak CR+
 MRL Lifequest
 Laerdal FR

Defipulsform:
 monophasisch    biphasisch    unbekannt  

Reanimationsmaßnahmen durch geschultes nicht ärztliches Rettungs- oder Pflegepersonal

CPR durch geschultes Rettungs- oder Pflegepersonal

Frühdefibrillation:   Anzahl Schocks  

 keine Frühdefibrillation
 Fred
 Lifepak 12
 Lifepak 500
 MRL Lifequest
 Forerunner FR1
 Forerunner FR2

Defipulsform:
 monophasisch    biphasisch    unbekannt  

Definitionen:
Spontankreislauf: elektrische Aktivität mit Auswurf und Puls.

defibrillationswürdige Rhythmen:
pVT: pulslose ventrikuläre Tachykardie, regelmäßiger EKG−Rhythmus konstanter Amplitude mit QRS−Verbreiterung > 0.12 sec und

Figure 3.4: page 2 of the MRL online questionnaire
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Frequenz > 100/min, jedoch ohne Puls.
VF/KaFli: ventrikuläres Flimmern / Kammerflimmern, in Frequenz und Amplitude unkoordiniertes EKG ohne effiziente
Ventrikelkontraktion.

nicht defibrillationswürdige Rhythmen:
PEA/EMD: pulslose elektrische Aktivität / elektromechanische Entkopplung, jede Form elektrischer Aktivität außer VF/pVT, die zwar mit
einer elektrischen Depolarisation einhergeht, welche einen Auswurf erwarten ließe, aber ohne darauffolgende Ventrikelkontraktion und
damit ohne Auswurf.
Asystolie: Elektrischer Herzstillstand, keine ventrikuläre Erregung. z.B. 0−Linie, dying heart, reine Vorhoferregung.

erstes registriertes EKG Speichern  Speichern und Beenden  Abbrechen

   Spontankreislauf   pVT   VF   PEA/EMD   Asystolie  

Notärztliches Ereignisprotokoll (mit MRL Defibrillator)

Uhrzeit (hh:mm)   zeitlicher Ablauf muß nicht in dieser Reihenfolge sein

 Eintreffen des Notarztes

Intubation

Intravenöser Zugang  keine Angabekeine Angabe

1. Defibrillationsserie Speichern  Speichern und Beenden  Abbrechen

Ausgangsrhythmus pVT   VF   unbekannt  

EKG nach 1. Schock  Spontankreislauf    pVT    VF    PEA/EMD    Asystolie    kein Schock

EKG nach 2. Schock  Spontankreislauf    pVT    VF    PEA/EMD    Asystolie    kein Schock

EKG nach 3. Schock  Spontankreislauf    pVT    VF    PEA/EMD    Asystolie    kein Schock

Medikamentengabe Speichern  Speichern und Beenden  Abbrechen

Adrenalin mg

Pitressin Einheiten

Atropin mg

Sedacorone mg

Lidocain mg

Mg++ g

NaHCO3 ml

letzten Eintrag löschen  

Defibrillationsserie hinzufügen   Medikamentengabe hinzufügen  

Ergebnis Speichern  Speichern und Beenden  Abbrechen

 Spontankreislauf
keiner

Dauer   min

bis Klinikaufnahme

Blutdruck  mmHg    stabil  instabil

Herzfrequenz  min−1

weitere Medikamentengaben

Figure 3.5: page 3 of the MRL online questionnaire
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 Klinikaufnahme
 MZA Sckockraum
 Unfall Schockraum
 Hall Schockraum

 Abbruch der Reanimation / Todesfeststellung

weiteres
Komplikationen  Aspiration

 Thoraxinstabilität
sonstige

Technische Probleme

Speichern  Speichern und Beenden  Abbrechen

   

Tier-OP Datenbank
MRL Studie  (Hilfe)
Administration
Logout
© 2003 Peter Hamm, Univ. Klinik für Anästhesie, Innsbruck

Figure 3.6: page 4 of the MRL online questionnaire
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Figure 3.7: Matlab GUI for viewing channels of XML-based data sets
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Figure 3.8: editing events of XML-based data sets
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Chapter 4

Principles of Time Series
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4.1 Modelling Time Series

This section handles with the mathematical modelling of data generated in a measurement
process. The distinction between the values (i.e. recorded numbers) of observations and
the mathematical structure modelling the realisation of these values is strongly emphasised.
Much of the material covered here (and a lot more) can be found in [31, 30, 100].

Definition 4.1 (Time Series (TS)) A time series is a function x : T → R which assigns an
observation or data value x(t) to a specified time t ∈ T , when the observation was recorded.
If T ⊆R is a discrete set, e.g., T = Z, the observations are denoted xt and the time series is
called a discrete time series. If T is a continuous set, e.g. T = [0,1]⊆ R, the observations
are denoted x(t) and the time series is called a continuous time series.

We will restrict ourselves to discrete time series subsequently, because all data we are deal-
ing with was recorded at discrete times.

The notion time series describes the data values or samples collected during a certain
measurement process. In order to build a mathematical model for the process itself, generat-
ing the data, one has to allow for the possibly unpredictable nature of (future) observations.
The common way of handling this task is to assume that each observation xt is a realised
value of a certain random variable Xt . This results in the following definition.

47
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Definition 4.2 (Stochastic Process) A stochastic process X is a family of random variables
{Xt , t ∈ T} defined on a common probability space {Ω,F,P}.

This means that for every t ∈ T there is a random variable Xt , i.e. a function

Xt : Ω → R
ω 7→ Xt(ω).

Such a random variable Xt models all possible observations xt , which could be recorded at
time t. Vice versa, if the observation xt is a realisation of the random variable Xt , there exists
an ω ∈ Ω such that xt = Xt(ω). This can be clarified more by defining functions

X·(ω) : T → R
t 7→ Xt(ω),

for every ω ∈ Ω. Such a function is called a realisation or sample-path of the stochastic
process X . A time series x is generated by a stochastic process X , if there exists a realisation
X·(ω), i.e. an ω ∈ Ω, such that

x = X·(ω).

Remark 4.1 The distinction between a time series and its generating stochastic process is
often silently blurred or even ignored, and one uses the notion time series for both mathe-
matical structures.

4.1.1 Construction of the probability space, backward shift operator

To get an impression of the space Ω, we construct it explicitly by defining Ω := RT , i.e.,
Ω = {x : T →R}, which is the set of all sample-paths corresponding to the chosen time-set
T .

Using this definition and restricting ourselves to the case that T = Z, the random vari-
ables {Xt , t ∈ Z} and the backward shift operator B can be nicely defined. For every t ∈ Z
define Xt by

Xt : RZ → R
x 7→ Xt(x) := x(t).

The random variable Xt is therefore the evaluation function with argument t, or the projec-
tion onto the t-th component of x. Now define on Z the backward translation

b : Z → Z
t 7→ b(t) := t−1.

This induces a pullback operation b∗ on RZ

b∗ : RZ → RZ

t 7→ b∗(x) := x◦b.

We define the backward shift operator B on the family of random variables {Xt , t ∈ Z} by

B : {Xt , t ∈ Z} → {Xt , t ∈ Z}
Xt 7→ B(Xt) := Xt ◦b∗ = Xt−1
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4.1.2 Induced Structures

Given a probability space {Ω,F,P}, a random variable X : Ω → R induces a probability
measure P∗ on R. For a (measureable) subset A ⊆ R define

P∗(A) := P(X−1(A)).

The probability distribution function FX : R→ [0,1] of P∗ is defined as

FX(x) := P∗((−∞,x)).

The probability density function fX : R → R is the first (generalised) derivative of FX . It
follows that

FX(a) =
∫ a

−∞

fX(x)dx

and ∫
∞

−∞

fX(x)dx = 1.

The expectation E(X) or mean µ of a random variable X : Ω → R is defined as

E(X) :=
∫

R
x fX(x)dx. (4.1)

A function g : R → R can be used to generate a new random variable g(X) := g ◦X from
X . The following proposition asserts how random variables of this kind can be handled, cf.
[24, 25].

Proposition 4.1 The expectation E(g(X)) of g(X) can be computed using the probability
density function fX of X:

E(g(X)) =
∫

R
g(x) fX(x)dx.

Proof.
Substituting with respect to g one can write

E(g(X)) =
∫

R
y fg(X)(y)dy =

∫
R

g(x) fg(X)(g(x))|g′(x)|dx.

On the other hand ( fg(X) ◦g) · |g′| is the probability density function fX of X , because for all
A ⊆ R it holds that ∫

A
fX(x)dx =

∫
g(A)

fg(X)(y)dy,

and according to the same substitution as above the right-hand side of the last equation
equals ∫

A
fg(X)(g(x))|g′(x))|dx.

�

Corollary 4.1 The expectation operator E is linear, i.e. for random variables X and Y and
numbers a and b ∈ R it holds that

E(aX +bY ) = aE(X)+bE(Y ).
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The variance Var(X) of a random variable X is defined as

Var(X) := E([X −E(X)]2) =
∫

R
(x−E(X))2 fX(x)dx,

and because of Corollary 4.1 we have

Var(X) = E(X2)−E(X)2

Var(a+bX) = b2Var(X) ∀a,b ∈ R.

Let’s consider two random variables X and Y defined on a common probability space
{Ω,F,P}. Just as in the case of only one random variable, now the pair (X ,Y ) : Ω→R2 in-
duces a probability measure on R2. The induced probability density function fX ,Y : R2 →R
is called the joint distribution function. The probability density function fX of X can be
reconstructed from the joint distribution function fX ,Y via the so-called marginal density
function :

fX(x) =
∫

R
fX ,Y (x,y)dy.

The marginal density function for Y is defined analogously. The conditional density function
of Y given X = x is the probability density function fY |X(.|x) on R defined as

fY |X(y|x) :=

{
fX ,Y (x,y)

fX (x) if fX(x) > 0

0 otherwise

Figure 4.1 shows in an example that the conditional density function of Y given X = 2
equals the intersecting line of the joint distribution function at x = 2 but normalised to yield
unit area under the distribution. The definition of the conditional density function implies
the Bayes’ theorem for density functions

fX ,Y (x,y) = fY |X(y|x) fX(x).

The conditional expectation of Y given X = x, denoted as E(Y |X = x), is the mean of the
conditional density function of Y given X = x, i.e.,

E(Y |X = x) :=
∫

R
y fY |X(y|x)dy.

Figure 4.2 shows as a contour plot the joint distribution function and the conditional expec-
tation of Y given X = x as a function of x. Not specifying a certain value for X yields the
notion of the conditional expectation of Y given X , denoted as E(Y |X). It is defined as a
random variable in terms of X , which his means that E(Y |X) is a function g◦X of X , mostly
denoted g(X):

g◦X : Ω → R→ R

ω 7→ X(ω) =: x 7→ g(x) := E(Y |X = x)

Remark 4.2 Note that E(Y |X = x), the conditional expectation of Y given X = x, is a
number, while E(Y |X), conditional expectation of Y given X, is a random variable.
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Figure 4.1: Surface plot of an exemplary Gaussian joint distribution function fX ,Y and the
appendant conditional density function fY |X(y|x) for x = 2.

Corollary 4.2 (law of iterated expectations) The expectation of the conditional expecta-
tion of Y given X is equal to the expectation of Y , i.e.,

E(E(Y |X)) = E(Y ).

Proof.

E(E(Y |X)) =
∫

R

∫
R

y fY |X(y|x)dy fX(x)dx

=
∫

R

∫
R

y fX ,Y (x,y)dxdy

=
∫

R
y fY (y)dy

= E(Y ),

where Bayes’ theorem was used for the second equality and the definition of marginal dis-
tribution was used for the third equality.

�

Two random variables X and Y (defined on the same probability space) are independent, if
their joint distribution function factorises to the product of their marginal density functions:

fX ,Y (x,y) = fX · fY (y).
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Figure 4.2: Contour plot of an exemplary non-Gaussian joint distribution function fX ,Y and
appendant conditional expectation E(Y |X = x) as a function of x.

In this case the conditional density function of Y given X = x equals the marginal density
function of Y for all values of x:

fY |X(y|x) = fY (y).

Example 4.1 (IID) A stochastic process X is called independent identically distributed
noise (IID), denoted X ∼ IID, if all random variables Xt induce the same probability mea-
sure on R and are pairwise independent.

Example 4.2 (Random Walk) Assume {Xt , t ∈N} is IID with zero-mean, i.e., for all t ∈N
we have E(Xt) = 0.1 Then the stochastic process {St , t ∈ N}, defined by

St :=
t

∑
k=1

Xk

is called random walk. If the Xt have a symmetric probability density function, then the
corresponding random walk is called symmetric.

For two random variables X and Y (defined on the same probability space) the covariance
is defined as

Cov(X ,Y ) := E([X −E(X)][Y −E(Y )]).

1The set of natural numbers N is defined to be {1,2,3, . . .}.
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Because of the linearity of the expectation operator E, we have the identity

Cov(X ,Y ) = E(XY )−E(X)E(Y ).

This means, if at least one of the random variables is zero-mean, the covariance equals the
expectation of their product. Furthermore, Cov(X ,Y ) = Cov(Y,X).

Corollary 4.3 For two random variables X and Y (defined on the same probability space)
and numbers a and b ∈ R we have

Var(aX +bY ) = a2Var(X)+2abCov(X ,Y )+b2Var(Y ).

Proof.
Straight forward, cf. for example [68, p.744].

�

Suppose we have two vectors of random variables2 ~X : Ω → Rv and ~Y : Ω → Rw with,
in general, different dimensions v and w. The expectation operator E and the covariance
operator Cov can be generalised to vectors and matrices of random variables by element-
wise application, such that with

~µX := E(~X) ∈ Rv and ~µY := E(~Y ) ∈ Rw

we can define the covariance matrix of ~X and~Y as

Cov(~X ,~Y ) := E([~X −~µX ][~Y −~µY ]T)
= E(~X~Y T)−~µX~µT

Y ,

where AT denotes the transpose of a matrix or vector A.

Corollary 4.4 The affine transform ~Y := ~a + B~X of a vector ~X of random variables has
expectation

E(~Y ) =~a+BE(~X)

and covariance matrix
Cov(~Y ,~Y ) = BCov(~X ,~X)BT

The correlation of two random variables X and Y (defined on the same probability space)
is defined as

Corr(X ,Y ) :=
Cov(X ,Y )√

Var(X)
√

Var(Y )
.

X and Y are uncorrelated if Corr(X ,Y ) = 0, which is equivalent to Cov(X ,Y ) = 0.

Example 4.3 (WN) A stochastic process X is called white noise (WN), denoted

X ∼WN(µ,σ2),

if all random variables Xt have mean µ , variance σ2 and are pairwise uncorrelated.

Corollary 4.5 If two random variables X and Y are independent, then they are also uncor-
related. The converse is not true in general.

2Vectors are used as column-vectors unless stated differently.
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Proof.
The first statement follows from∫

R

∫
R

xy fX ,Y (x,y)dxdy =
∫

R

∫
R

xy fX(x) fY (y)dxdy = E(X)E(Y ).

A counter example for the second statement is given in [31, p. 42 Problem 1.8].

�

Thus IID is uncorrelated, but WN is in general not independent.

4.2 Best MSE Forecast

The aim of this section is to elaborate a first notion of forecast in terms of a stochastic
process modelling a time series. A basic and simple setting is the example of only two
random variables {X1,X2} making up a stochastic process X . The problem of forecasting
X2 by X1 is to find a random variable X̂2 which approximates or forecasts X2 ”optimally by
taking X1 into account“. To evaluate the quality of a forecast, one usually specifies a so-
called loss function, which is a summary of how concerned one is, if the forecast is off by a
particular amount. The optimisation problem is then to find a forecast X̂2, which minimises
the value of the loss function. We will use the following loss function

Definition 4.3 (mean squared error MSE) The mean squared error (MSE) of a random
variable X̂ forecasting X is defined as

MSE(X , X̂) := E([X − X̂ ]2)

We first need the following lemma before we can prove the main result of Theorem 4.1.

Lemma 4.1 (best constant MSE forecast) The best constant MSE forecast of a random
variable X is E(X), i.e., with respect to a given random variable X the minimum MSE
element in the set {c : Ω → R : c(ω) = c ∈ R} of constant random variables is E(X).

Proof.
In order to minimise

E([X − c]2) =
∫

R
(x− c)2 fX(x)dx

differentiate with respect to c and set the first derivative to zero:

−2
∫

R
(x− c) fX(x)dx = 0

c =
∫

R
x fX(x)dx = E(X)

�

Theorem 4.1 (best MSE forecast) The best MSE forecast of a random variable X2 in terms
of a random variable X1 is the conditional expectation E(X2|X1), i.e., in the set of functions
g(X1) the minimum MSE element is E(X2|X1).
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Proof.

E([X2−g(X1)]2) =
∫

R

∫
R
(x2−g(x1))2 fX1,X2(x1,x2)dx2dx1

=
∫

R

(∫
R
(x2−g(x1))2 fX2|X1(x2|x1)dx2

)
fX1(x1)dx1

The MSE can be minimised by choosing for every x1 an optimal number g(x1) ∈ R, which
minimises the inner integral of the last expression. This is however accomplished by the
mean of fX2|X1 , as was shown in Lemma 4.1.

g(x1) =
∫

R
x2 fX2|X1(x2|x1)dx2 = E(X2|X1 = x1),

which proves the theorem.

�

The result of Theorem 4.1 can be easily generalised to the problem of forecasting a random
variable Xn+1 in terms of a vector ~X = (X1, · · · ,Xn)T of random variables, i.e., finding a
function g : Rn → R having minimum MSE when combined with ~X to give the predictor
g(~X) = g(X1, · · · ,Xn):

f~X(~x) =
∫

R
f~X ,Xn+1

(~x,xn+1)dxn+1

fXn+1|~X(xn+1|~x) :=


f~X ,Xn+1

(~x,xn+1)

f~X (~x) if f~X(~x) > 0

0 otherwise

E(Xn+1|~X =~x) :=
∫

R
xn+1 fXn+1|~X(xn+1|~x)dxn+1 =: g(~x)

E(Xn+1|~X) := g(~X)

E(Xn+1|~X) is the minimum MSE (scalar) random variable with respect to Xn+1 and ~X . Thus,
the conditional expectation solves the minimisation problem

argmin{g:Rn→R}E([Xn+1−g(~X)]2).

4.3 Best Linear MSE Forecast

As is shown in Fig. 4.2 the conditional expectation E(Y |X) is in general a non-linear
function of X and difficult to compute. We will thus work with a linear forecasting the-
ory. The aim is therefore to determine the best MSE-forecast X̂n+1 of Xn+1 in terms of
~X = (X1, · · · ,Xn)t by means of a linear combination

X̂n+1 = α1Xn +α2Xn−1 + · · ·αnX1.

The problem of the best linear MSE-forecast can be reformulated and solved in terms of
an orthogonal projection in the linear space of random variables with finite second order
moment. Strictly mathematically speaking, we will work within the structure of a Hilbert
space.
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4.3.1 Hilbert Space Formalism

General Theory

For a thorough presentation of the mathematical theory of Hilbert spaces it is referred to
[67]. A Hilbert space H is an inner product space, which is complete, i.e., every Cauchy
sequence converges in the induced norm of the inner product space to some element of
H. An inner product space H is a vector space equipped with a sesqui-linear3 map 〈·, ·〉 :
H×H→ C, called inner product, fulfilling the following properties

(1) 〈x,y〉= 〈y,x〉∗ the conjugate complex of 〈x,y〉
(2) 〈·, ·〉 is positive definite, i.e.,

〈x,x〉 ≥ 0 ∀x ∈H and

〈x,x〉= 0 ⇔ x = 0

The induced norm of a Hilbert space is defined as

‖ x ‖=
√
〈x,x〉,

and has the following properties

|〈x,y〉| ≤ ‖ x ‖ · ‖ y ‖ (Cauchy-Schwarz inequality)

‖ x+ y ‖ ≤ ‖ x ‖+ ‖ y ‖ (triangle inequality)

‖ x+ y ‖2 + ‖ x− y ‖2 = 2 ‖ x ‖2 +2 ‖ y ‖2 (parallelogram law)

Example 4.4 The vector spaces Rn and Cn, equipped with the inner product

〈x,y〉 :=
n

∑
k=1

x∗k · yk

are finite real, respectively complex, Hilbert spaces.

Hilbert Space of Random Variables

Given a probability space {Ω,F,P} we construct the induced Hilbert space L2(Ω,F,P) of
random variables. First we define the set C of random variables having finite second order
moment.

C := {X :→ R |E(X2) < ∞}.
Remember, the expectation operator E is the integral

E(X) =
∫

R
x fX(x)dx,

cf. equation (4.1). It can be shown, that map

〈X ,Y 〉 := E(XY )

is an inner product4 on C and thus makes C into a Hilbert Space, which we denote as
L2(Ω,F,P).

3sesqui-linear means linear in one component and anti-linear in the other.
4In order to guarantee the positive definiteness of the inner product, one has to build equivalence classes X̄

of random variables by X ∼ X ′ ⇔ P(X −X ′ = 0) = P((X −X ′)−1(0)) = 1. For the sake of simplicity, we will
identify a random variable X with its equivalence classes X̄ .
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Remark 4.3 Applying the Cauchy-Schwarz inequality for X ,Y ∈ L2(Ω,F,P) to their de-
trended random variables X̃ := X −E(X) and Ỹ := Y −E(Y ) shows, that

1 ≥ |〈X̃ ,Ỹ 〉|
‖ X̃ ‖ · ‖ X̃ ‖

=
|E(X̃Ỹ )|√

E(X̃ X̃) ·
√

E(ỸỸ )
=

=
∣∣∣∣ Cov(X ,Y )
Var(X)Var(Y )

∣∣∣∣= |Corr(X ,Y )|.

This means that the correlation of two random variables is always between −1 and 1.

Orthogonal Projection in a Hilbert space

The so-called ”Projection Theorem“ (Theorem 4.2) gives the solution to the problem of
finding the best linear approximation of a vector y in terms of vectors xk,k = 1, . . . ,n in a
given Hilbert space. By the best linear approximation a vector ŷ is meant, which is a linear
combination

ŷ =
n

∑
k=1

αkxk, αk ∈ R , respectively C

such that
‖ y− ŷ ‖2

is minimised. In the case of L2(Ω,F,P) this refers to the best linear MSE-forecast of a
random variable Y in terms of n other random variables Xk,k = 1, . . . ,n.

Theorem 4.2 (Projection Theorem) The best linear approximation ŷ of a vector y in terms
of vectors xk,k = 1, . . . ,n in a Hilbert space H is unique and given by the orthogonal pro-
jection PM(y) of y onto the linear span M := [x1, . . . ,xn]R of the vectors xk,k = 1, . . . ,n, i.e.,
there exists a unique vector ŷ ∈ M, such that

‖ y− ŷ ‖= minx∈M ‖ y− x ‖

and this vector is uniquely identified by the property

y− ŷ⊥M

which means that 〈y− ŷ,x〉= 0, ∀x ∈ M.

Proof. A proof can be found for example in [30, p.51] and [100, p.51].

�

Figure 4.3 depicts the orthogonal projection of a vector y ∈ R3 onto the plane spanned by
two vectors x1,x2 ∈ R3.

Proposition 4.2 The orthogonal projection PM : H → M in a Hilbert space H onto the
linear span M := [x1, . . . ,xn]R of vectors xk ∈H,k = 1, . . . ,n has the following properties

1. PM is linear.

2. ‖ y ‖2=‖ PM(y) ‖2 + ‖ (1−PM)(y) ‖2 (Pythagoras)

3. y ∈ M ⇔ PM(y) = y
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y

x2

1x

P   (y)M

My−P   (y)

Figure 4.3: Orthogonal projection of a vector y ∈R3 onto the plane spanned by two vectors
x1,x2 ∈ R3.

4. y ∈ M⊥⇔ PM(y) = 0

5. M1 ⊆ M2 ⇔ PM1PM2 = PM1

Remark 4.4 In the case of the Hilbert space L2(Ω,F,P) the n equations

〈y− ŷ,xk〉= 0, k = 1, . . . ,n

are called ”prediction equations“ and are often described by saying, that the prediction
error y− ŷ is uncorrelated 5 with the predictors xk.

Remark 4.5 The coefficients αk in the expression

ŷ = PM(y) =
n

∑
k=1

αkxk, αk ∈ R , respectively C

are not necessarily unique, however ŷ = PM(y) is unique.

4.3.2 Ordinary Least Squares, Linear Regression

The ordinary least squares approximation of a vector y ∈ Rn in terms vectors xk ∈ Rn, k =
1, . . . ,m constitutes, according to the projection theorem, the same problem as finding the
orthogonal projection of y onto the linear span M := [x1, . . . ,xm]R. This is the same as
solving the overdetermined system of linear equations

y ∼ [x1, . . . ,xm]β

by finding a vector β0 ∈ Rm, such that

‖ y− [x1, . . . ,xm]β0 ‖= minβ∈Rm ,

5Using the word ”uncorrelated“is only correct, when a constant random variable is included in the set of
predictors xk,∀k = 1, . . . ,n
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where ‖ · ‖ is the induced norm of the standard inner product in Rn. Finally, the linear
regression of n observations yl, l = 1, . . . ,n on n observations of m different regressors
xl

k, l = 1, . . . ,n, k = 1, . . . ,m is the problem of finding coefficients β k ∈R, k = 1, . . . ,m such
that

n

∑
l=1

(yl −
m

∑
k=1

β
kxl

k)
2

is minimal.6 The last expression can be written in matrix form as

‖ y−Xβ ‖2,

where ‖ · ‖ is again the induced norm of the standard inner product in Rn. All in all, we
see that all problem sets (ordinary least squares, overdetermined system of linear equations,
and linear regression) are solved using the method of orthogonal projection in Rn, which is
best presented in matrix notation. The projection

PM(y) = [x1, . . . ,xm]β = Xβ

is the unique vector fulfilling

〈y−Xβ ,xk〉= 0, ∀k = 1, . . . ,m,

which is the same as
〈xk,Xβ 〉= 〈xk,y〉, ∀k = 1, . . . ,m.

These m equations can be written as rows of the following matrix equation

XTXβ = XTy.

If the m×m matrix XTX is invertible, the vector of coefficients β is unique and can be
computed as

β = (XTX)−1XTy. (4.2)

Otherwise, β is not unique, and a solution can be computed in the same way by using
a generalised inverse of XTX in place of (XTX)−1. The projection Xβ , however, is still
unique.

4.3.3 Vectors of Random Variables

The previous section dealt with the application of the projection theorem to vectors in the
Hilbert space Rn. In this section we consider H = L2(Ω,F,P) as Hilbert space and develop
the formulas for the projection of w random variables, subsumed under a w-dimensional
vector~Y , onto the linear span of v random variables, subsumed under a v-dimensional vector
~X . By

P(~Y |~X) or short ~̂Y

we denote the w-dimensional vector containing the w best linear MSE predictors of the w
random variables in~Y in terms of the v random variables in ~X . P(~Y |~X) must have the form

P(~Y |~X) = M~X ,

6Usually a constant regressor of 1s is added in order to include a possible offset in the observations yl . This
means the insertion of a column of 1s in the matrix X .



60 CHAPTER 4. PRINCIPLES OF TIME SERIES

where M is a w× v matrix, and must fulfil

〈~Y −~̂Y,~XT〉 = 0

〈~Y ,~XT〉 = 〈~̂Y,~XT〉= M〈~X ,~XT〉.

Thus, if 〈~X ,~XT〉= E(~X~XT) is invertible, there is a unique solution for M, namely

M = 〈~Y ,~XT〉〈~X ,~XT〉−1 = E(~Y~XT)E(~X~XT)−1.

If E(~X~XT) is not invertible, there is no unique solution for M, but still a unique solution for
~̂Y = P(~Y |~X). It can be constructed by choosing any generalised inverse7 of E(~X~XT) in place
of E(~X~XT)−1.

4.3.4 Iterated and Updating Projections

The so-called ”law of iterated projections“ says that projecting the projection of a vector
y onto the linear span of the vectors x1,x2 onto the vector x1 leads to the same result as
projecting y onto x1 only, or more concisely

P(P(y|x1,x2)|x1) = P(y|x1).

This is just a special case of one of the properties of orthogonal projections mentioned
earlier in Proposition 4.2:

M1 ⊆ M2 ⇔ PM1PM2 = PM1 .

The so-called ”law of updating a projection“ says how a projection changes when a vector
is added to the linear span of vectors to be projected on.

Theorem 4.3 (law of updating a projection) The orthogonal projection onto the linear
span of the vectors x1, . . . ,xn+1 ∈ H can be decomposed by use of the so-called innova-
tion

in+1 := xn+1−P(xn+1|x1, . . . ,xn)

into
P(·|x1, . . . ,xn+1) = P(·|x1, . . . ,xn)+P(·|in+1)

Proof.
Lets denote [x1, . . . ,xn+1]R by M, [x1, . . . ,xn]R by M1 and [in+1]R by M2. From

in+1 = (1−PM1)(xn+1)

it follows that
in+1⊥M1 i.e. M2⊥M1.

Additionally, M1 and in+1 span the the whole space M, i.e.,

M = M1⊕M2.

From standard Hilbert space theory it follows that the projection onto M can be decomposed
into the sum of the projections onto the orthogonal subspaces M1 and M2, cf. Figure 4.4

PM = PM1 +PM2

�
7A generalised inverse of a matrix A is a matrix A− such that AA−A = A. Every matrix has at least one, cf.

[37, 100].
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M2

M1

xn+1

in+1

Figure 4.4: Law of updating a projection.

4.4 The Gaussian Case

The optimal MSE-forecast of a random variable X2 in terms of a random variable X1 is
the conditional expectation E(X2|X1), whereas the best linear MSE-forecast is given by the
orthogonal projection P(X2|X1) having at least the same mean squared error.

MSE{P(X2|X1)} ≥ MSE{E(X2|X1)}

There exists an important class of random variables, for which the above inequality is an
equality, or more precisely, for which P(X2|X1) = E(X2|X1). This is the class of Gaussian
random variables.

Definition 4.4 (Gaussian Random Variables) A random variable X is a Gaussian ran-
dom variable, denoted by X ∼ N(µ,σ2), if its probability density function is given by

fX(x) =
1

σ
√

2π
exp
(
−(x−µ)2

2σ2

)
,

for µ,σ ∈R and σ > 0. A vector of random variables ~X = (X1, . . . ,Xn)T is called multivari-
ate Gaussian or jointly Gaussian, denoted by ~X ∼ N(~µ,Ω) , if its joint distribution function
is given by

f~X(~x) = (2π)−
n
2 det(Ω)−

1
2 exp

(
−1

2
(~x−~µ)T

Ω
−1(~x−~µ)

)
,

for ~µ ∈ Rn and Ω ∈ Rn,n symmetric and positive semi-definite.

Corollary 4.6 The following properties follow easily from the definition.

1. The mean (vector) and the variance (variance-covariance matrix) is given by

E(X) = µ,

E(~X) = ~µ

Var(X) = σ
2

Cov(~X ,~X) = Ω

The last equation shows that Ω has to be symmetric and positive semi-definite.
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2. (Multivariate) Gaussian random variables are completely determined by their mean
µ (mean vector ~µ) and variance σ2 (variance-covariance matrix Ω).

3. If ~X ∼ N(~µ,Ω) then for any H ∈ Rn,n and any ~a ∈ Rn we have that

H~X +~a ∼ N(H~µ +~a,HT
ΩH)

4. The random variables of a multivariate Gaussian are pairwise uncorrelated, if and
only if Ω is diagonal. In this case, the joint distribution function factorises and the
random variables are thus independent. The converse is not true.

Theorem 4.4 If ~X = (X1, . . . ,Xn+1)T is a multivariate Gaussian vector of random vari-
ables, then the best linear MSE-forecast P(Xn|Xn, . . . ,X1,X0) including a constant random
variable, e.g. X0 = 1, is the best MSE-forecast and thus equals the conditional expectation
E(Xn|Xn, . . . ,X1), i.e.

P(Xn|Xn, . . . ,X1,X0) = E(Xn|Xn, . . . ,X1).

Proof.
We sketch the proof only for the bivariate case. The general case is handled e.g. in [68,
p.100ff.]. For two jointly Gaussian random variables

(X1,X2)∼ N((µ1,µ2)T,Ω)

with

Ω =
(

ω11 ω12
ω21 ω22

)
the conditional density function can be computed as

fX2|X1(x2,x1) =
1√

2πH
exp
(
−(x2−m(x1))2

2H

)
with

H := ω22−
ω21ω12

ω11
and m(x1) := µ2 +

ω21

ω11
(x1−µ1)

This is a univariate Gaussian probability density distribution centred at m(x1). The condi-
tional expectation

E(X2|X1 = x1) =
∫

R
x2 fX2|X1(x2,x1)dx2 = m(x1)

is thus given by
E(X2|X1) = µ2 +

ω21

ω11
(X1−µ1),

which is linear in X1 and X0 := 1.

�

Figure 4.5 shows as a contour plot of the joint distribution function of two jointly Gaus-
sian random variables X and Y , some conditional density functions of Y on X and the
conditional expectation of Y given X = x as a function of x.
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Figure 4.5: Contour plot of an exemplary Gaussian joint distribution function fX ,Y together
with some conditional density functions fY |X(·|x), and the conditional expectation E(Y |X =
x) as a function of x.
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Chapter 5

State-Space Models and Kalman
Theory
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A very rich class of time series models, including ARIMA and classical decomposition
models with random variations, can be formulated by state-space models. The Kalman
recursions allow a unified approach to prediction and estimation for all processes that can
be given a state-space formulation.

The subsequent presentation follows [31, 30]. More on state-space models and Kalman
theory can be found for example in [65, 68, 71, 98].

5.1 State-Space Models

Definition 5.1 (state-space model) A state-space model for a (possibly multivariate) time
series {Yt}, t ∈ N consists in the specification of two equations. The observation equation

Yt = GtXt +Wt , t ∈ N

expresses for every time t ∈ N the w-dimensional random variable Yt , called observation
or measurement, as a linear function of the v-dimensional random variable Xt , called state,
plus a measurement noise term Wt , where

{Wt} ∼ WN(0,{Rt})

65
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and {Gt} is a sequence of w× v matrices. The notation {Wt} ∼ WN(0,{Rt}) indicates that
the sequence of random vectors {Wt} has mean zero and covariance matrix E(WtW ′

s ) =
Rtδt,s. The second equation

Xt+1 = FtXt +Vt , t ∈ N

is called the state equation, and determines the state Xt+1 at time t + 1 in terms of the
previous state Xt and a noise term Vt , where

{Vt} ∼ WN(0,{Qt})

and {Ft} is a sequence of v× v matrices. The noise sequences {Wt} and {Vt} are uncorre-
lated, i.e., E(WtV ′

s ) = 0 for all s and t ∈ N. It is finally assumed that the initial state X1 is
uncorrelated with all noise terms of {Wt} and {Vt}.

Remark 5.1 Different generalisations of the above definition exist. The noise terms {Wt}
and {Vt} can be allowed to correlate, and in control theory an additional term Htut is added
in the state equation.

Remark 5.2 In many cases the matrices Ft ,Gt ,Qt and Rt are time-independent, in which
case the subscript is suppressed.

Corollary 5.1 It follows from the definition that Xt and Yt are linear functions

Xt = lt(X1,V1, . . . ,Vt−1)
Yt = mt(X1,V1, . . . ,Vt−1,Wt)

of the initial state and noise terms up to t−1 and t, respectively.

Corollary 5.2 From 5.1 and the assumptions on the noise terms, it follows that

E(VtX ′
s) = 0, E(VtY ′

s ) = 0, E(WtX ′
s) = 0 ∀1 ≤ s ≤ t

and
E(WtY ′

s ) = 0 ∀1 ≤ s < t.

Remark 5.3 Neither {Xt} nor {Yt} are necessarily stationary1.

Remark 5.4 If the sequence {X1,V1,V2, . . .} is independent, then {Xt} has the Markov
property, i.e., the distribution of Xt+1 given Xt , . . . ,X1 is the same as the distribution of Xt+1
given Xt . This property is possessed by many physical systems, provided that one includes
sufficiently many components in Xt .

5.2 The Kalman Recursions

For a given state-space model the Kalman recursions solve the problem of finding the min-
imum MSE linear predictors of the state Xt in terms of the observations Y1,Y2, . . . and a
random vector Y0 which is orthogonal to all Vt and Wt ∀t ≥ 1. In many cases Y0 is chosen to
be the constant random vector (1, . . . ,1)T.

Estimation of Xt in terms of
1For the definition of stationarity cf. e.g. [31]
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• Y0,Y1,Y2, . . . ,Yt−1 defines the prediction problem,

• Y0,Y1,Y2, . . . ,Yt defines the filtering problem,

• Y0,Y1,Y2, . . . ,Yn (n > t) defines the fixed-point smoothing problem.

Each of these problems can be solved recursively using the appropriate Kalman recursions.
For a state-vector X = (X1,X2, . . . ,Xv)T we introduce the following notation

Pt(X) :=

 Pt(X1)
...

Pt(Xv)

 ,

where
Pt(Xk) := P(Xk|Y0,Y1, . . . ,Yt)

is the best, i.e. the minimum MSE, linear predictor of Xk in terms of all components of
Y0,Y1, . . . ,Yt . This means, Pt(X) is the unique vector of random variables of the form

Pt(X) = A0Y0 + . . .+AtYt

with Ai ∈ Rv,w, such that
[X −Pt(X)]⊥Ys, ∀s = 0, . . . , t. (5.1)

In other words, each component of Pt(X) is the unique orthogonal projection of the respec-
tive component of X onto the linear span generated by all components of

Y0,Y1, . . . ,Yt .

The operator Pt is linear, i.e., for a matrix A and a vector V of appropriate dimensions

Pt(AX) = APt(X)

and
Pt(X +V ) = Pt(X)+Pt(V ).

Remark 5.5 If all components of X ,Y1, . . . ,Yt are jointly normally distributed and Y0 =
(1, . . . ,1)T, then

Pt(X) = E(X |Y1, . . . ,Yt),

as was demonstrated in Theorem 4.4

Remark 5.6 For a v-dimensional state-vector X and a w-dimensional observation Y , the
orthogonal projection P(X |Y ) is of the form

P(X |Y ) = MY,

where M ∈ Rv,w is given by

M = E(X Y T) [E(Y Y T)]−1,

cf. subsection 4.3.3. If E(Y Y T) is not invertible, it can be replaced by any generalised
inverse of E(Y Y T).
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The three types of estimation problems mentioned above can now be formulated by the
determination of three projectors

• prediction problem: determine Pt−1(Xt)

• filtering problem: determine Pt(Xt)

• fixed-point smoothing problem: determine Pn(Xt), (n > t)

The following three theorems solve each of these problems recursively and are thus known
as the Kalman recursions.

5.2.1 Prediction

Theorem 5.1 (Kalman Prediction) The 1-step predictors X̂t := Pt−1(Xt) and their error
covariance matrices Ωt := E[(Xt − X̂t)(Xt − X̂t)T] are determined by
(a) the initial conditions

X̂1 = P(X1|Y0), and

Ω1 = E[(X1− X̂1)(X1− X̂1)T]

(b) and the recursions for t = 1,2, . . .

X̂t+1 = Ft X̂t +Θt∆
−1
t (Yt −Gt X̂t) (5.2)

Ωt+1 = FtΩtFT
t +Qt −Θt∆

−1
t Θ

T
t , where (5.3)

∆t := GtΩtGT
t +Rt (5.4)

Θt := FtΩtGT
t (5.5)

and ∆
−1
t is any generalised inverse of ∆t

Remark 5.7 The recursions for Ωt , ∆t and Θt are independent of the observations Yt .

Remark 5.8 The matrices

Kt := ΩtGT
t (GtΩtGT

t +Rt)−1

(or sometimes FtKt) are called the Kalman gain matrices. They reflect the impact of new
observation data on the predictor X̂t+1.

Proof of Theorem 5.1.
We define the sequence of innovations {It} by

I0 := Y0, and

It := Yt −Pt−1(Yt) ∀t = 1,2, . . .

Note that the innovations It for t = 1,2, . . . can be written as

It = Yt −Gt X̂t = Gt(Xt − X̂t)+Wt

because Pt−1 is linear and Wt is orthogonal to the linear span onto which the operator Pt−1
projects. Furthermore, {It} is an orthogonal sequence which results from the fact that the
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innovations are prediction errors, cf. equation (5.1). From the ”law of updating a projection“
(Theorem 4.3) it follows that

Pt(·) = Pt−1(·)+P(·|It)

Applying Pt(·) on Xt+1 and using the last equation yields

Pt(Xt+1) = Pt−1(Xt+1)+P(Xt+1|It)
X̂t+1 = Pt−1(FtXt +Vt)+MIt

= Ft X̂t +MIt ,

where the linearity of Pt−1 was used and the fact that Vt is orthogonal to the linear span onto
which the operator Pt−1 projects. The matrix M can be computed according to Remark 5.6
as

M = E(Xt+1IT
t )E(ItIT

t )−1

We define ∆t as the covariance matrix of the innovation at time t

∆t := E(ItIT
t )

= E{[Gt(Xt − X̂t)+Wt ][Gt(Xt − X̂t)+Wt ]T}
= GtE[(Xt − X̂t)(Xt − X̂t)T]GT

t +Rt

= GtΩtGT
t +Rt ,

where the linearity of the expectation operator E and the orthogonality of (Xt − X̂t) with Wt

was used. We define Θt as the matrix of scalar products of the components of the state at
time t +1 with the components of the innovation at time t.

Θt := E(Xt+1IT
t )

= E{[FtXt +Vt ][Gt(Xt − X̂t)+Wt ]T}
= FtE[Xt(Xt − X̂t)T]GT

t ,

where it was used that Wt⊥Vt , Wt⊥Xt , and Vt⊥(Xt − X̂t). The predictor X̂t is orthogonal to
the prediction error Xt − X̂t , i.e.,

E[X̂t(Xt − X̂t)T] = 0,

and thus
E[Xt(Xt − X̂t)T] = E[(Xt − X̂t)(Xt − X̂t)T]

Using this we can write

Θt = FtE[(Xt − X̂t)(Xt − X̂t)T]GT
t = FtΩtGT

t .

This completes the proof of equation (5.2). To prove the recursions for Ωt we compute

Ωt+1 = E[(Xt+1− X̂t+1)(Xt+1− X̂t+1)T]
= E(Xt+1XT

t+1)−E(Xt+1X̂T
t+1)−E(X̂t+1XT

t+1)+E(X̂t+1X̂T
t+1)

However,

E(Xt+1X̂T
t+1) = E[(Xt+1− X̂t+1 + X̂t+1)X̂T

t+1] = E(X̂t+1X̂T
t+1), and

E(X̂t+1XT
t+1) = E[X̂t+1(X̂t+1− X̂t+1 +Xt+1)T] = E(X̂t+1X̂T

t+1),
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because predictor X̂t+1 is orthogonal to the prediction error Xt+1− X̂t+1, i.e.,

E[X̂t+1(Xt+1− X̂T
t+1)

T] = 0.

Thus, the expansion for Ωt+1 can be further simplified to

Ωt+1 = E(Xt+1XT
t+1)−E(X̂t+1X̂T

t+1) (5.6)

And using the recursions

Xt+1 = FtXt +Vt , and

X̂t+1 = Ft X̂t +Θt∆
−1
t (Yt −Gt X̂t),

we get

Ωt+1 = FtE(XtXT
t )FT

t +Qt −FtE(X̂t X̂T
t )FT

t −
−Θt∆

−1
t E(ItIT

t )∆−t
t Θ

T
t

= Ft [E(XtXT
t )−E(X̂t X̂T

t )]FT
t +Qt −Θt∆

−1
t Θ

T
t ,

where we used the definition ∆t = E(ItIT
t ) and the fact ∆t = ∆T

t . Finally, we apply equation
(5.6) with time t, we get

Ωt+1 = FtΩtFT
t +Qt −Θt∆

−1
t Θ

T
t ,

which completes the proof.

�

An Example - Estimation of Position from Acceleration

As a first and simple example for an application of state-space models and Kalman re-
cursions let’s assume to have recordings {yt} of acceleration measurements. These could
originate, for example, from a compression acceleration measurement during CPR appli-
cation. Without any further assumptions, the problem of finding the position of a device
corresponding to its acceleration is only solvable when the initial position and the initial ve-
locity (or equivalent information) are known. We will circumvent this problem by assuming
that the position is located near the coordinate origin and that positions and velocities are
damped by a factor 0 < γ < 1. More accurately, the state space model is defined in the
following way. A state

Xt =


Xq

t
Xv

t
Xa

t
1


at time t consists of a position component Xq

t , a velocity component Xv
t , an acceleration

component Xa
t , and the constant number 1. The state transition matrix at time t is defined

by

Ft = Γ


1 dt 0 0
0 1 dt 0
0 0 0 yt+1
0 0 0 1

 ,
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where dt is the sampling time and

Γ =


γ 0 0 0
0 γ 0 0
0 0 1 0
0 0 0 1

 .

Note, that the state transition matrix Ft contains the observed acceleration yt+1. In general,
this value is not observed until time t +1 and is thus not available for an on-line computation
of the predicted state X̂t+1 at time t. We assume, however, that all computations are made a
posteriori or with an appropriate time delay.

Finally, the observation projection matrix Gt fetches the acceleration component Xa
t

from the state and is thus given by

Gt =
(

0 0 1 0
)
.

We simulate the series {yt} of observed accelerations by a deterministic signal, which is zero
or rectangular, plus a white noise term WN(0,σ2

w) with σw = 0.1. The sampling time dt is
chosen to be 0.1 seconds and the damping parameter γ is set to 0.99. The noise covariance
matrix Q of the state equation is set zero and initial values for position and velocity are
set to Xq

0 = 2 and Xv
0 = −1, respectively. Figures 5.1 and 5.2 show the simulation data for

zero and rectangular acceleration over N = 700 sample points. By means of the Kalman
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Figure 5.1: Simulated data for the estimation of position from zero acceleration.

prediction recursions estimates of the unknown states, i.e. the position and the velocity
can be computed from the observed acceleration. Figures 5.3 and 5.4 show the estimates
for zero and rectangular acceleration and compare them to the simulated signals. Normal
random values with standard deviation σe = 4 were chosen for the position and the velocity
component of the initial state, the initial acceleration component were set to the initially
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Figure 5.2: Simulated data for the estimation of position from rectangular acceleration.

observed acceleration value. The initial error covariance matrix Ω1 was set to

Ω1 =


σ2

e 0 0 0
0 σ2

e 0 0
0 0 0 0
0 0 0 0

 .

If no Γ matrix had been used, or equivalently γ = 1, the estimated position would not
have converged to the simulated position. The smaller γ is chosen the faster the estimates
converge to the simulated signals. However, choosing for example γ = 0.75 the damping
of the position and the velocity variable is that strong, such that they can not be interpreted
any more as the integrals of the observed acceleration.

5.2.2 Filtering

Theorem 5.2 (Kalman Filtering) The filtered estimates Xt|t := Pt(Xt) and their error co-
variance matrices Ωt|t := E[(Xt −Xt|t)(Xt −Xt|t)T] are determined by the recursions

Xt|t = X̂t +ΩtGT
t ∆

−1
t (Yt −Gt X̂t) (5.7)

Ωt|t = Ωt −ΩtGT
t ∆

−1
t GtΩ

T
t (5.8)

Remark 5.9 The estimate Xt|t = Pt(Xt) is often called the ”a posteriori estimate“ of Xt ,
because it estimates Xt by means of all measurements up to and including Yt . The estimate
X̂t = Pt−1(Xt) is often called the ”a priori estimate“ of Xt , because it estimates Xt before
including the measurement Yt .

Remark 5.10 Rewriting equations (5.2) and (5.3) from the Kalman prediction Theorem 5.1
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Figure 5.3: Estimates for zero acceleration.
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Figure 5.4: Estimates for rectangular acceleration.
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we get

X̂t+1 = Ft{X̂t +ΩtGT
t ∆

−1
t (Yt −Gt X̂t)}

= FtXt|t , and

Ωt+1 = Ft(Ωt −ΩtGT
t ∆

−1
t GtΩ

T
t )FT

t +Qt

= FtΩt|tF
T

t +Qt .

Thus, the a priori estimate at time t + 1 is the a posteriori estimate at time t multiplied by
the state-transition matrix Ft . Likewise, the error covariance matrix of the a priori estimate
at time t +1 can be computed from the error covariance matrix of the a posteriori estimate
at time t by multiplication of the state-transition matrix Ft from both sides and addition of
the state-noise covariance matrix Qt .

Proof of Theorem 5.2.
From the ”law of updating a projection“ (Theorem 4.3) it follows that

Pt(Xt) = Pt−1(Xt)+P(Xt |It), or

Xt|t = X̂t +P(Xt |It), where

P(Xt |It) = MIt = M(Yt −Gt X̂t), and

M = E(XtIT
t )E(ItIT

t )−1

= E{Xt [Gt(Xt − X̂t)+Wt ]T}∆
−1
t

= E[Xt(Xt − X̂t)T]GT
t ∆

−1
t

= E[(Xt − X̂t)(Xt − X̂t)T]GT
t ∆

−1
t

= ΩtGT
t ∆

−1
t ,

which proves equation (5.7). To prove equation (5.8) we write using the ”law of updating a
projection“

Xt −Pt−1(Xt) = Xt −Pt(Xt)+Pt(Xt)−Pt−1(Xt)
Xt −Pt−1(Xt) = Xt −Pt(Xt)+MIt

Xt − X̂t = Xt −Xt|t +MIt

The filter error Xt −Xt|t is orthogonal on the linear span of Y0,Y1, . . . ,Yt in which the inno-
vation It lies. Thus we have

E[(Xt − X̂t)(Xt − X̂t)T] = E[(Xt −Xt|t)(Xt −Xt|t)
T]+E[MIt(MIt)T]

Ωt = Ωt|t +ME(ItIT
t )MT

Ωt = Ωt|t +ΩtGT
t ∆

−1
t ∆t∆

−t
t GtΩ

T
t

Ωt = Ωt|t +ΩtGT
t ∆

−1
t GtΩ

T
t ,

which proves equation (5.8) and completes the proof of Theorem 5.2.

�
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5.2.3 Fixed-Point Smoothing

Theorem 5.3 (Kalman Fixed-Point Smoothing) For n ≥ t and fixed t, the fixed-point
smoothed estimates Xt|n := Pn(Xt) and error covariance matrices

Ωt|n := E[(Xt −Xt|n)(Xt −Xt|n)
T]

are determined by the following recursions for n = t, t +1, . . .

Xt|n = Xt|n−1 +Ωt,nGT
n ∆

−1
n (Yn−GnX̂n), (5.9)

Ωt,n+1 = Ωt,n(Fn−Θn∆
−1
n Gn)T, (5.10)

Ωt|n = Ωt|n−1−Ωt,nGT
n ∆

−1
n GnΩ

T
t,n (5.11)

with Ωt,n := E[(Xt − X̂t)(Xn− X̂n)T] and with initial conditions

Xt|t−1 = X̂t , and

Ωt,t = Ωt|t−1 = Ωt

Proof of Theorem 5.3.
Again we use the ”law of updating a projection“ (Theorem 4.3) and write

Pn(Xt) = Pn−1(Xt)+P(Xt |In), or

Xt|n = Xt|n−1 +CIn, with

C = E(XtIT
n )E(InIT

n )−1

= E[Xt [Gn(Xn− X̂n)+Wn]T)∆−1
n

= E[Xt(Xn− X̂n)]GT
n ∆

−1
n

= E[(Xt − X̂t)(Xn− X̂n)]GT
n ∆

−1
n

= Ωt,nGT
n ∆

−1
n

which proves equation (5.9). In the penultimate step it was used that the predictor X̂t lies
in the linear span of observations up to and including Yt−1 and thus is orthogonal to the
prediction error Xn − X̂n which is orthogonal to the linear span of observations up to and
including Yn−1, where n ≥ t.

To prove equation (5.10) we write

Ωt,n+1 = E[(Xt − X̂t)(Xn+1− X̂n+1)T], and

Xn+1− X̂n+1 = FnXn +Vn−{FnX̂n +Θn∆
−1
n [Gn(Xn− X̂n)+Wn]}

The noise terms Vn and Wn are both orthogonal to Xt − X̂t and therefore

Ωt,n+1 = E{(Xt − X̂t)[(Fn−Θn∆
−1
n Gn)(Xn− X̂n)]T}

= E[(Xt − X̂t)(Xn− X̂n)]T](Fn−Θn∆
−1
n Gn)T

= Ωt,n(Fn−Θn∆
−1
n Gn)T,

which proves equation (5.10).
Finally, to prove equation (5.11) we write using the ”law of updating a projection“

Xt −Pn(Xt) = Xt −Pn−1(Xt)+Pn−1(Xt)−Pn(Xt)
Xt −Xt|n = Xt −Xt|n−1−CIn, or

Xt −Xt|n−1 = Xt −Xt|n +CIn
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The fixed-point smoothing error Xt−Xt|n is orthogonal on the linear span of the observations
Y0,Y1, . . . ,Yn in which the innovation In lies. Thus we have

E[(Xt −Xt|n−1)(Xt −Xt|n−1)
T] = E[(Xt −Xt|n)(Xt −Xt|n)

T]+C∆nCT

Ωt|n−1 = Ωt|n +C∆nCT, or

Ωt|n = Ωt|n−1−C∆nCT

= Ωt|n−1−Ωt,nGT
n ∆

−1
n ∆n∆

−t
n GnΩ

T
t,n

= Ωt|n−1−Ωt,nGT
n ∆

−1
n GnΩ

T
t,n,

which proves equation (5.11) and completes the proof of Theorem 5.3.

�

5.2.4 Properties of the Kalman Recursions

For the estimation of state-space models, cf. section 5.3, a proposition is presented, which
compares the evolution of the Kalman recursions of a state space model with different noise
terms and initial conditions. More precisely, for given structural matrices {Ft} and {Gt},
and univariate observations {Yt} let the state space model M be completed by the covari-
ance matrix Q for the state-noise, the covariance matrix R = σ2

w 6= 0 for the observation-
noise, the initial error covariance matrix Ω1 and the initial state X̂1 = µ ∈ Rv. The corre-
sponding normalised state-space model M∗ is then given by completing {Ft}, {Gt} and
{Yt} with the covariance matrices and initial conditions

Q∗ :=
Q
σ2

w
, R∗ :=

R
σ2

w
= 1,

Ω
∗
1 :=

Ω1

σ2
w
, X̂∗

1 = 0.

Then the following proposition holds

Proposition 5.1 The Kalman prediction and fixed-point smoothing recursions for the mod-
els M and M∗ yield for all t = 1,2,3, . . . and n = t, t +1, t +2, . . .

Ω
∗
t =

Ωt

σ2
w
, (5.12)

∆
∗
t =

∆t

σ2
w
, (5.13)

Θ
∗
t =

Θt

σ2
w
, (5.14)

X̂t = X̂∗
t +Ct µ, with (5.15)

C1 = 1, and Ct+1 = (Ft −Θt∆
−1
t Gt)Ct , (5.16)

Ω
∗
t|n =

Ωt|n

σ2
w

, (5.17)

Xt|n = X∗
t|n +Dt|nµ, with (5.18)

Dt|t = (1−Ωt,tGT
t ∆

−1
t Gt)Ct , and (5.19)

Dt|n+1 = Dt|n−Ωt,n+1GT
n+1∆

−1
n+1Gn+1Cn+1 (5.20)
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Remark 5.11 Note that the computation of the matrices Ct and Dt|t can be made in the
model M or in the model M∗, i.e.,

Ct = C∗
t and Dt|t = D∗

t|t .

The case of Kalman filtering is covered by the statements of Proposition 5.1 for fixed-point
smoothing when n is set to t.

Proof of Proposition 5.1.
We prove all statements by induction.
For t = 1 we have Ω∗

1 = Ω1/σ2
w by definition and from equation (5.4) that

∆
∗
1 = GtΩ

∗
1GT

1 +R∗ =
1

σ2
w
(GtΩ1GT

1 +R) =
∆1

σ2
w

and from equation (5.5) that

Θ
∗
1 = FtΩ

∗
1GT

1 =
1

σ2
w

FtΩ1GT
1 =

Θ1

σ2
w
.

Now the induction step for Ω∗
t ,∆

∗
t and Θ∗

t from t → t +1. From equation (5.3) we conclude
that

Ω
∗
t+1 = FtΩ

∗
t FT

t +Q∗−Θ
∗
t ∆

∗−1
t Θ

∗t
t

= Ft
Ωt

σ2
w

FT
t +

Q
σ2

w
− Θt

σ2
w

(
∆t

σ2
w

)−1
Θt

t

σ2
w

=
1

σ2
w

(
FtΩtFT

t +Q−Θt∆
−1
t Θ

t
t
)

=
Ωt+1

σ2
w

Analogously, we get

∆
∗
t+1 = Gt+1Ω

∗
t+1GT

t+1 +R∗

= Gt+1
Ωt+1

σ2
w

GT
t+1 +

R
σ2

w

=
1

σ2
w

(
Gt+1Ωt+1GT

t+1 +R
)

=
∆t+1

σ2
w

Θ
∗
t+1 = Ft+1Ω

∗
t+1GT

t+1

= Ft+1
Ωt+1

σ2
w

GT
t+1

=
Θt+1

σ2
w

Again, for t = 1 we have

X̂1 = X̂∗
1 +C1µ

µ = 0+C1µ,
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if C1 = 1. The induction step t → t +1:

X̂∗
t+1 = Ft X̂∗

t +Θ
∗
t ∆

∗−1
t (Yt −Gt X̂∗

t )
= Ft X̂t +Θt∆

−1
t (Yt −Gt X̂t)

−(Ft −Θt∆
−1
t Gt)Ct µ

= X̂t+1− (Ft −Θt∆
−1
t Gt)Ct µ,

from which it follows that Ct+1 = (Ft −Θt∆
−1
t Gt)Ct . In order to prove the relations for the

fixed-point smoothing recursions, we first prove by induction over n = t, t +1, t +2, . . . that
Ωt,n and Ω∗

t,n are proportional, too.
Induction start n = t :

Ωt,t = Ωt = σ
2
wΩ

∗
t = σ

2
wΩ

∗
t,t

Induction step n → n+1 :

Ωt,n+1 = Ωt,n(Fn−Θn∆
−1
n Gn)T

= σ
2
wΩ

∗
t,n(Fn−Θ

∗
n∆

∗−1
n Gn)T

= σ
2
wΩ

∗
t,n+1

Then we conclude by induction over n = t−1, t, t +1, . . . that Ωt,n and Ω∗
t,n are proportional.

Induction start n = t−1 :

Ωt|t−1 = Ωt = σ
2
wΩ

∗
t = σ

2
wΩ

∗
t|t−1

Induction step n → n+1 :

Ωt|n+1 = Ωt|n−Ωt,n+1GT
n+1∆

−1
n+1Gn+1Ω

T
t,n+1

= σ
2
wΩ

∗
t|n−σ

2
wΩ

∗
t,n+1GT

n+1∆
∗−1
n+1Gn+1Ω

∗t
t,n+1

= σ
2
wΩ

∗
t|n+1

Finally, we prove the statements for Xt|n and X∗
t|n by induction over n = t, t +1, . . .

Induction start n = t :

Xt|t = X̂t +Ωt,tGT
t ∆

−1
t (Yt −Gt X̂t)

= X̂∗
t +Ωt,tGT

t ∆
−1
t (Yt −Gt X̂∗

t )
+Ct µ −Ωt,tGT

t ∆
−1
t GtCt µ

= X∗
t|t +(1−Ωt,tGT

t ∆
−1
t Gt)Ct µ,

form which we conclude Dt|t = (1−Ωt,tGT
t ∆

−1
t Gt)Ct .

Induction step n → n+1 :

Xt|n+1 = Xt|n +Ωt,n+1GT
n+1∆

−1
n+1(Yn+1−Gn+1X̂n+1)

= X∗
t|n +Ωt,n+1GT

n+1∆
−1
n+1(Yn+1−Gn+1X̂∗

n+1)

+Dt|nµ −Ωt,n+1GT
n+1∆

−1
n+1Gn+1Cn+1µ

= X∗
t|n+1 +(Dt|n−Ωt,n+1GT

n+1∆
−1
n+1Gn+1Cn+1)µ,

form which it follows, that Dt|n+1 = Dt|n−Ωt,n+1GT
n+1∆

−1
n+1Gn+1Cn+1. This completes the

proof of Proposition 5.1.
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Remark 5.12 The recursions for the normalised state-space could also be started with
a non-zero initial state X̂∗

1 = µ∗. The statements of Proposition 5.1 still hold when µ is
replaced by µ −µ∗ in equations (5.15) and (5.18) .

5.3 MLE and MMSE Optimisation

In this section two different methods are presented which allow the selection of a distinct
state-space model from a set of models by analysing realisations {yt} of a time series {Yt}
of observations. The first method, called ”Maximum Likelihood Estimation“ and abbre-
viated MLE, selects the model, for which the given data {yt} has a maximal value of the
probability density function corresponding to the model. The other method, called ”Min-
imum Mean Squared Error“ and abbreviated MMSE, selects the model with minimal
mean squared difference between realisations {yt} of {Yt} or {xt} of {Xt} and the corre-
sponding estimates {ŷt} or {x̂t}, which could be predicted, filtered or fixed-point smoothed
estimates.

5.3.1 Maximum Likelihood Estimation

Definition 5.2 (Likelihood) For a univariate, but not necessarily stationary, Gaussian time
series {Yt}t=1,...,n with mean zero and autocovariance function

κ(i, j) = (Γn)i, j = Cov(Yi,Yj)

the likelihood L is the random variable defined by

L := (2π)−n/2 [det(Γn)]
−1/2 exp

{
−1

2
~Y T

n Γ
−1
n

~Yn

}
,

where~Yn := (Y1, . . . ,Yn)T and Γn is assumed to be non-singular.

The definition of the likelihood uses the probability density function

f~Yn
: Rn → R

(y1, . . . ,yn) 7→ f~Yn
(y1, . . . ,yn)

of the n jointly Gaussian random variables {Yt}t=1,...,n, cf. definition 4.4, and replaces the
real variables (y1, . . . ,yn) by the corresponding random variables

Yt : Ω → R
ω 7→ Yt(ω) = yt .

In [31, p.158ff.] it is derived that the likelihood L can be represented by means of the
one-step predictors Ŷt as

L = (2π)−n/2

(
n

∏
t=1

∆t

)−1/2

exp

{
−1

2

n

∑
t=1

(Yt − Ŷt)2

∆t

}
, with

∆t := E[(Yt − Ŷt)2].
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For a set of univariate state-space models, which is completely parametrised by a vector
ϑ ∈ Θ ⊆ Rm, the maximum likelihood estimate (MLE) of ϑ is found by maximising the
likelihood of each model with respect to the given observation data {yt}, i.e., by finding the
value of ϑ , which maximises the function

l : Θ → R

ϑ 7→ l(ϑ) = (2π)−n/2

(
n

∏
t=1

∆t

)−1/2

exp

{
−1

2

n

∑
t=1

(yt − ŷt)2

∆t

}
,

where the ŷt = Ŷt(ω) are the realisations of the predictor random variables Ŷt just as the
yt = Yt(ω) are the realisations of the random variables Yt . The predicted values ŷt are
computed for example by means of the Kalman prediction recursions using Y0 := 1. It can
be shown, cf. [30, p.483], that for multivariate state-space models with a w-dimensional
observation space the likelihood can be written analogously as

L = (2π)−nw/2

(
n

∏
t=1

det(∆t)

)−1/2

exp

{
−1

2

n

∑
t=1

IT
t ∆

−1
t It

}
, (5.21)

where

It = Yt − Ŷt , and

∆t = E(ItIT
t ),

are both found for example from the Kalman prediction recursions with Y0 := 1. Thus, the
numerical value of l(ϑ) for each Kalman model identified by ϑ can be computed by means
of the Kalman prediction recursions.

Remark 5.13 The method of maximum likelihood estimation is widely used in time series
analysis even if the time series {Yt}t=1,...,n is not Gaussian.

Direct maximisation of l(ϑ) is numerically slow, if the dimension of the state-space or the
dimension of the parameter-space Θ is large. The following paragraph gives a technique
to reduce the parameter dimension dim(Θ) of the maximisation problem l : Θ → R for a
special class of model families.

MLE for Structural State-Space Models

Let {Yt}t=1,...,n be a univariate time series of the form

Xt+1 = FtXt +Vt , Vt ∼WN(0,Q)
Yt = GtXt +Wt , Wt ∼WN(0,σ2

w),

where t = 1,2, . . . and {Ft} and {Gt} are assumed to be known. The covariance matrices Q
and σ2

w are assumed not to be known. Models of this type are called ”structural state-space
models“.

We set Y0 = 1 in order to include constant terms in the prediction. Lets assume, that the
initial state is the unknown but constant random variable X1 = µ ∈ Rv. It follows that

X̂1 = P(X1|Y0) = P(µ|1) = µ
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and
Ω1 = E[(X1− X̂1)(X1− X̂1)T] = 0.

We thus consider the family of state-space models parametrised by

µ ∈ Rv, Q ∈ Sym(Rv,v) and σ
2
w ∈ R+,

which results in a parameter set Θ of dimension

dim(Θ) =
v(v+1)

2
+ v+1 =

v(v+3)
2

+1.

We will show, that the maximisation problem for the likelihood function

l(ϑ) = l(µ,Q,σ2
w)

can be reduced to the problem of minimising the so-called ”reduced likelihood“

l̃(Q∗) =−2
n

ln
[
l(µ̂(Q∗), σ̂2

w(Q∗)Q∗, σ̂2
w(Q∗))

]
+C, C ∈ R,

which reduces the dimension of the parameter set to

dim(Θ∗) =
v(v+1)

2
.

In place of the family {Mϑ}ϑ∈Θ we consider the family of normalised state space models

{Mϑ ∗}ϑ ∗∈Θ∗ ,

cf. subsection 5.2.4. The quadratic form in the likelihood function l(ϑ) of equation (5.21)
with w = 1 (univariate) can be rewritten as

S(µ,Q,σ2
w) :=

n

∑
t=1

IT
t ∆

−1
t It

=
n

∑
t=1

(Yt − Ŷt)2

∆t

=
n

∑
t=1

(Yt −Gt X̂∗
t −GtCt µ)2

σ2
w∆∗t

=:
1

σ2
w

S∗(µ,Q∗)

The likelihood of equation (5.21) with w = 1 can be rewritten as

L(µ,Q,σ2
w) = (2π)−n/2

(
n

∏
t=1

∆t

)−1/2

exp

{
−1

2

n

∑
t=1

IT
t ∆

−1
t It

}

= (2π)−n/2

(
n

∏
t=1

σ
2
w∆

∗
t

)−1/2

exp
{
− 1

2σ2
w

S∗(µ,Q∗)
}

=: L∗(µ,Q∗,σ2
w)
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Computing −2ln
[
L∗(µ,Q∗,σ2

w)
]

gives

−2ln
[
(L∗(µ,Q∗,σ2

w))
]

= n ln(2π)+n ln(σ2
w)+

n

∑
t=1

ln(∆∗t )+
1

σ2
w

S∗(µ,Q∗)

= n ln(2π)+n ln(σ2
w)+

n

∑
t=1

ln(∆∗t )+

+
1

σ2
w

n

∑
t=1

(Yt −Gt X̂∗
t −GtCt µ)2

∆∗t
.

Maximising

l(ϑ) = l(µ,Q,σ2
w) =

[
L(µ,Q,σ2

w)
]
(ω) =

[
L∗(µ,Q∗,σ2

w)
]
(ω)

corresponds to minimising
{
−2ln

[
L∗(µ,Q∗,σ2

w)
]}

(ω). However, for fixed Q∗ the latter
can be minimised analytically. First, minimisation with respect to the variable µ presents
an OLS problem with the quadratic form

[S∗(µ,Q∗)] (ω) =
n

∑
t=1

(yt −Gt x̂∗t −GtCt µ)2

∆∗t
,

where the {x̂∗t } are the values of the predicted states of the normalised model with respect
to the given data {yt}. Comparing with subsection 4.3.2, we identify the corresponding
overdetermined system of linear equations

yt −Gt x̂∗t√
∆∗t

∼ GtCt√
∆∗t

µ, ∀t = 1,2, . . . ,n

The OLS solution is given by applying equation (4.2) with

X =


G1C1√

∆∗1
...

GnCn√
∆∗n

 and

y =


y1−G1x̂∗1√

∆∗1
...

yn−Gnx̂∗n√
∆∗n

 .

The optimal initial state for fixed Q∗ is therefore

µ(Q∗) =
[

∑
n
t=1CT

t GT
t GtCt

∆∗t

]−1 n

∑
t=1

CT
t GT

t (yt −Gt x̂∗t )
∆∗t

.

Minimisation with respect to the variable σ2
w can be done by setting the partial derivative

zero.
∂

∂σ2
w

{
−2ln

[
L∗(µ,Q∗,σ2

w)
]
(ω)
}

=
n

σ2
w
− S∗(µ,Q∗)

(σ2
w)2 = 0,

which is solved for

σ
2
w(Q∗) =

S∗(µ,Q∗)
n

.



5.3. MLE AND MMSE OPTIMISATION 83

Thus, for fixed Q∗ the minimal value of
{
−2ln

[
L∗(µ,Q∗,σ2

w)
]}

(ω) is achieved when

µ = µ̂(Q∗) =
[

∑
n
t=1CT

t GT
t GtCt

∆∗t

]−1 n

∑
t=1

CT
t GT

t (yt −Gt x̂∗t )
∆∗t

, and

σ
2
w = σ̂2

w(Q∗) =
S∗(µ̂(Q∗),Q∗)

n
=

n

∑
t=1

(Yt −Gt X̂∗
t −GtCt µ̂(Q∗))2

∆∗t
.

Substituting these optimal values into

−2ln
[
L∗(µ,Q∗,σ2

w)
]
(ω) =−2ln

[
l(µ,σ2

wQ∗,σ2
w)
]

gives

−2ln
[
l(µ̂(Q∗), σ̂2

w(Q∗)Q∗, σ̂2
w(Q∗))

]
=

n ln(2π)+n ln(σ̂2
w(Q∗))+

n

∑
t=1

ln(∆∗t )+
1

σ̂2
w(Q∗)

S∗(µ̂(Q∗),Q∗) =

n ln(2π)+n ln(σ̂2
w(Q∗))+

n

∑
t=1

ln(∆∗t )+n.

Dividing by n and neglecting constants we get the so-called ”reduced likelihood“

l̃(Q∗) := ln(σ̂2
w(Q∗))+

1
n

n

∑
t=1

ln(∆∗t )

= ln

[
1
n

n

∑
t=1

(Yt −Gt X̂∗
t −GtCt µ̂(Q∗))2

∆∗t

]
+

1
n

n

∑
t=1

ln(∆∗t ).

We summarise our results in the following proposition.

Proposition 5.2 For a family {Mϑ}ϑ∈Θ of univariate structural state-space models with
ϑ = (µ,Q,σ2

w) as defined above and observation data {yt}t=1,...,n, the MLE can be com-
puted by minimising the corresponding reduced likelihood l̃(Q∗). The latter can be com-
puted by applying the Kalman prediction recursions for the family of normalised state-space
models {Mϑ ∗}ϑ ∗∈Θ∗ . Let Q̂∗ be the minimiser of l̃(Q∗). Then, the MLE ϑ̂ = (µ̂, Q̂, σ̂2

w) is
given by

µ̂ = µ̂(Q∗) =
[

∑
n
t=1CT

t GT
t GtCt

∆∗t

]−1 n

∑
t=1

CT
t GT

t (yt −Gt x̂∗t )
∆∗t

,

σ̂2
w = σ̂2

w(Q∗) =
n

∑
t=1

(Yt −Gt X̂∗
t −GtCt µ̂(Q∗))2

∆∗t
, and

Q̂ = σ̂2
w(Q∗)Q∗.

Remark 5.14 Proposition 5.2 still holds when the normalised state-space models are ini-
tialised with a non-zero state X̂∗

1 = µ∗, cf. Remark 5.12. Then, the expression for µ̂ in
Proposition 5.2 is the MLE of the difference µ̂ −µ∗.
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5.3.2 Minimum Mean Squared Error

Definition 5.3 (Mean Squared Error (MSE)) For a family {Mϑ}ϑ∈Θ of state-space mod-
els with observation data {yt}t=1,...,n and estimates {ỹt}t=1,...,n the mean squared error
(MSE) for each model Mϑ is defined by

m(ϑ) =
1
n

n

∑
t=1

||yt − ỹt ||2,

where || · || is the Euclidean norm in the observation-space Rw. The ỹt := Gt x̃t could result
from predicted, filtered or fixed-point smoothed state-estimates x̃t resulting from the corre-
sponding Kalman recursions when applied to the data {yt}. Analogously, if realisations
of the states {xt}t=1,...,n are known, the MSE in the state-space can be computed for each
model Mϑ by

m(ϑ) =
1
n

n

∑
t=1

||xt − x̃t ||2,

where in this case || · || is the Euclidean norm in the state-space Rv and the x̃t are predicted,
filtered or fixed-point smoothed state-estimates.

A model M
ϑ̂

in {Mϑ}ϑ∈Θ is called minimum mean squared error (MMSE) estimate, if
it has minimal MSE m(ϑ̂) with respect to all other models in {Mϑ}ϑ∈Θ.

Let’s assume we have a family {Mϑ}ϑ∈Θ of structural state-space models with

ϑ = (µ,Q,σ2
w),

cf. subsection 5.3.1, and estimates {ỹt = Gt x̃t}t=1,...,n. Consider the corresponding family
of normalised state space models {Mϑ ∗}ϑ ∗∈Θ∗ , cf. subsection 5.2.4. The quadratic form

m(µ,Q,σ2
w) =

1
n

n

∑
t=1

||yt − ỹt ||2,

can be rewritten as

m(µ,Q,σ2
w) =

1
n

n

∑
t=1

||yt −Gt x̃t ||2

=
1
n

n

∑
t=1

||yt −Gt x̃∗t −GtLt µ||2

=: m∗(µ,Q∗), (5.22)

where the matrices Lt are the respective matrices from Proposition 5.1, equations (5.15) and
(5.18), depending on the chosen type of Kalman recursions (predictor, filter or fixed-point
smoother). Minimisation with respect to the variable µ presents an OLS problem. The OLS
solution is given by applying equation (4.2) with

X =

 G1L1
...

GnLn

 and

y =

 y1−G1x̃∗1
...

yn−Gnx̃∗n

 .



5.3. MLE AND MMSE OPTIMISATION 85

The optimal initial state for fixed Q∗ is therefore

µ(Q∗) =

[
n

∑
t=1

LT
t GT

t GtLt

]−1 n

∑
t=1

LT
t GT

t (yt −Gt x̃∗t ). (5.23)

Corollary 5.3 Equations (5.22) and (5.23) show, that the MMSE estimate depends only on
the ratio Q∗ = Q

σ2
w

. The MMSE estimate therefore is not unique.

Analogous results hold for the MSE estimation in state-space.

m(µ,Q,σ2
w) =

1
n

n

∑
t=1

||xt − x̃t ||2

=
1
n

n

∑
t=1

||xt − x̃∗t −Lt µ||2

=: m∗(µ,Q∗),

and thus

µ(Q∗) =

[
n

∑
t=1

LT
t Lt

]−1 n

∑
t=1

LT
t (xt − x̃∗t ).

Remark 5.15 Note, that, in general, the observation estimates defined as ỹt := Gt x̃t are not
the corresponding estimates of yt . Only in the case of the Kalman prediction recursions we
have

P(Yt |Y0, . . . ,Yt−1) = P(GtXt +Wt |Y0, . . . ,Yt−1)
= GtP(Xt |Y0, . . . ,Yt−1)+P(Wt |Y0, . . . ,Yt−1)
= GtP(Xt |Y0, . . . ,Yt−1)+0

For the fixed-point smoother recursions, including the filter recursions, we have for n ≥ t

P(Yt |Y0, . . . ,Yn) = Yt ,

and on the other hand

P(Yt |Y0, . . . ,Yn) = P(GtXt +Wt |Y0, . . . ,Yn)
= GtP(Xt |Y0, . . . ,Yn)+P(Wt |Y0, . . . ,Yn),

where P(Wt |Y0, . . . ,Yn) 6= 0 unless Wt = 0.

Remark 5.16 In some situations, it may be desirable to minimise the MSE of ỹt := Gt x̃t not
with respect to the noisy observations yt = Gtxt + wt but to the “pure” observations Gtxt ,
in case the latter are available.
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6.1 Statement of the Medical Problem

During CPRchest compressions and ventilations cause artefacts in the ECG. Fig. 6.1 shows
the introduction of artefacts in a VF ECG signal during the onset of CPR in a porcine
model. In order that the rhythm detection algorithms of AEDs work properly, the inter-
national guidelines [17] prescribe a so-called “hands-off interval” for the time of analysis.
During this period CPR is stopped and the ECG signal is thus artefact free. However, as a
consequence of this, myocardial blood flow drops and both the success of a subsequent de-
fibrillation attempt [125] and the probability of success [54, 53] decrease. Thus, it would be
desirable to remove CPR artefacts from the ECG signal continuously during CPR. Thereby,
continuous rhythm detection would be possible and would provide minimal “hands-off”
delay before the delivery of an electric countershock. Furthermore, in the case of VF, CPR
removal algorithms would allow for continuous monitoring of the myocardial metabolism
of the heart through parameters derived from the artefact cleaned ECG signal, cf. subsection
1.3.1.

CPR artefact removal is thus a crucial step towards diagnostic based defibrillation and
has the potential of dramatically improving the survival rate of cardiac arrest patients.

6.2 Sources and Characteristics of CPR Artefacts

Langhelle et al. [94] propose a CPR artefact component model consisting of four sources.

G1: Signal components originating from the heart due to mechanical stimulation of the
heart itself.

G2: Signal components generated by mechanical stimulation of thoracic muscles.

89
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Figure 6.1: Onset of CPR in a porcine model recorded in the ventricular fibrillation ECG
signal(upper figure) and in the arterial blood pressure signal (lower figure)

G3: Signal components originating from the electrodes and caused by electrode tapping
or dragging.

G4: Signal components caused by static electricity and the following charge equalising
currents between the ECG amplifier and the patient.

Some of the listed artefacts can be reduced by measurement methodology [94], and some
by filtering methodology. Furthermore, the magnitude of CPR artefacts in the ECG sig-
nal depends on the present ECG rhythm (VF, asystole, NSR, etc) and can be different for
different recording devices.

For our purposes, we expect that the CPR artefacts are primarily composed of G1 and
G2. In addition, we hypothesise that the G1 and G2 components are

• periodic signals with slowly changing period and shape, and

• correlated to signals reflecting the chest compression magnitude (compression depth
and acceleration, thorax impedance, arterial blood pressure, etc.), cf. [94, 78] and
Fig. 6.1.

6.3 Overlapping of Frequencies - Why is CPR Artefact Removal
Difficult?

Many artefact removal problems in signal analysis can be handled by appropriate band-pass
filters. A necessary prerequisite is that the artefacts and the artefact-free part of the signal
are separated in the frequency domain. In the case of porcine VF ECG signals this is true
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(Fig. 6.2), and thus a simple high-pass filter can be applied to remove CPR artefacts from
the corrupted ECG signal to a satisfactory extent [138, 12]. However, the human heart
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Figure 6.2: Spectrogram transition from pure VF to VF with CPR artefacts in a porcine ECG
signal: The dominating VF frequencies do not overlap with the dominating frequencies of
the CPR artefacts.

fibrillates at frequencies that overlap with the characteristic frequencies of CPR artefacts
[136] (Fig. 6.3), which are determined by the chest compression rate. This is one of the
reasons why CPR artefact removal presents a delicate signal processing problem.

6.4 More Technical Problems

Besides the overlapping of signal and noise frequencies, there are some more technical
problems, which have to be addressed by a CPR artefact removal algorithm.

• In real life situations, the rates and amplitudes of chest compressions and ventilations
are not constant over time.

• The CPR ECG artefacts are in general not sinusoidal and thus can contain various
(high) frequencies.

• The shape of the CPR ECG artefacts can change in the course of time.

• The coupling to the chest compressions and thus the amplitude of the CPR ECG
artefacts can change in the course of time.

These items suggest that sophisticated adaptive removal algorithms are needed.
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Figure 6.3: Spectrogram transition from pure VF to VF with CPR artefacts in a human ECG
signal: The dominating VF frequencies overlap with the dominating frequencies of the CPR
artefacts.
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7.1 Evaluation Methods

This section deals with methods to quantify and evaluate the performance of a CPR removal
algorithm. Besides visual inspection in time-domain and in time-frequency domain (using
the spectrogram), there are two evaluation methods by which one can quantify the algorithm
performance:

• the restored signal-to-noise ratio (rSNR), and

• the performance of detection and scoring algorithms.

7.1.1 Restored SNR

An asystole ECG signal at containing CPR artefacts (the noise), and an artefact free ECG
signal xt (the signal) are normalised to unit variance. Both signals are then added with a
specific signal-to-noise ratio (SNR), more precisely, the sum yt is constructed as

yt = xt +α ·at ,

where α > 0 is chosen such that the SNR of the mixture

SNRmix = 10 · log10

(
Var(x)

Var(α ·a)

)
=−20 · log10(α)

has a specific fixed value. The scaling factor α has to be chosen as

α =
1√

10SNRmix/10
.
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A CPR removal algorithm separates the mixed signal yt into an estimate x̂t of the normalised
artefact free ECG signal and into an estimate of the ât of the normalised CPR artefacts:

yt = x̂t + ât .

Note that in general Var(x̂t) 6= 1 and Var(ât) 6= α2. Figure 7.1 shows a diagram of the
mixing and separation of signal and noise. The estimation error et is defined as

et = xt − x̂t = ât −α ·at

Finally, the rSNR of the separation is defined by [94, 124]

SNRrestored := 10 · log10

(
Var(x)
Var(e)

)
=−10 · log10 (Var(e)) .

It reflects the mean squared error of the reconstruction.
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Figure 7.1: Evaluation Method 1 (depicted for VF): The restored signal-to-noise ratio [94,
124] reflects the mean squared error when estimating the CPR part of the mixed signal.
Other artefact free ECG rhythms besides VF can be used analogously.
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7.1.2 Performance of Detection and Scoring Algorithms

A more pragmatic evaluation consists in the comparison of the values of one or more typical
ECG parameters. These can be computed e.g. for an artefact free ECG signal and an
adjacent artefact removed signal, cf. Fig. 7.2 and [55], but also for an artefact free ECG
signal and the estimated VF part after additive mixing with a CPR signal, c.f. 7.1.1. In the
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Figure 7.2: Evaluation Method 2 (depicted for VF): For an ECG signal with an artefact free
and a CPR contaminated part, the values of different typical ECG parameters computed for
the artefact free part and the artefact removed part can be compared.

former case of adjacent signal segments, the value of the ECG parameter should not differ
significantly, if one had applied a perfect artefact removal algorithm. Thus, the smaller
the difference of the ECG parameter, the better the performance of the artefact removal
algorithm. Possible ECG parameters are the decision of shock advice algorithms [55] and
VF parameters reflecting the probability of success of a hypothetical defibrillation [11, 12].

7.2 Previous Work

In animal models a simple band-pass filter was used to remove CPR artefacts from the VF
ECG signal [138, 12]. This works well for the porcine model, however, the human VF
frequencies overlap with the CPR introduced frequencies and can thus not be separated by
means of a band-pass filter [136]. More sophisticated mathematical methods have to be
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used. In contrast to the large amount of literature about algorithms to detect and analyse
VF signals [14, 11], there are surprisingly only few and recent publications addressing the
problem of removing CPR artefacts:

• Ruiz et al. [124] use Kalman filters assuming that the CPR artefact as well as the VF
signal can be modelled by sinusoidal functions of known angular frequencies. After
adding human asystole ECGs containing CPR artefacts to human artefact free VF
signals they evaluated the performance of their filtering algorithm by computing the
rSNR of the separated signals with respect to the original signals, cf. Fig. 7.1.
Criticism: We consider Kalman filters as a valuable technique for CPR removal,
however, their state space model should be modified to allow for more general CPR
and VF forms as observed in real life situations.

• Klotz et al. [89, 88] propose a methodology based on time-frequency methods and
local coherent line removal.
Criticism: They evaluated their algorithms so far only with porcine animal data by
visual inspection of the spectrogram.

• The Norwegian research group of Eftestol, Husoy et al. [94, 78, 55] apply an adaptive
filtering approach using additional reference signals (thoracic impedance, compres-
sion depth, etc.), which correlate with the CPR artefact signal. They added animal
asystole ECGs containing CPR artefacts to human artefact free ECG signals and com-
puted the rSNR, cf. Fig. 7.1 and [78]. In a subsequent analysis, the performance of
a shock advice algorithm before and after artefact removal was used for evaluation,
cf. Fig. 7.2 and [55].
Criticism: They observed large and spiky ECG artefacts without a similar shape in
the reference channels. These artefacts could thus not be reconstructed by a regres-
sion on the reference channels.
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We propose Kalman state-space methods [15, 65, 71] (cf. chapter 5) for CPR artefact
removal, because:

• The Kalman recursions provide a numerically fast and adaptive way to compute esti-
mates of the CPR part of the CPR corrupted signal.

• The underlying state space models include all classical time series models, can be
combined in a straightforward way, and allow for integration of reference signals
(thoracic impedance, compression depth, etc.).

• There exist established optimisation techniques for the estimation of model parame-
ters.

8.1 The Seasonal State-Space Model

This model is motivated by the idea that CPR artefacts form a roughly periodical signal,
whereas the VF ECG signal is not periodical, or at least at a much higher rate. However,
during uniformly applied CPR the artefact signal can unpredictably, but slowly change its
shape and period in the course of time.

The so-called ”seasonal“ state-space model [31, p.266f] allows for the modelling of a
periodical signal with an arbitrary and stochastically changing shape and admits to handle a
time-dependent period. This is appropriate for estimating the CPR part of a corrupted signal,
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as its shape and period typically change over time. The artefact free signal is estimated as the
observation error. More sophisticated models could include for example an auto-regressive
model for the artefact free signal.

8.1.1 The model with Noise and Constant Period

The seasonal state-space model with noise and constant period d > 0 is presented in [31,
p.266f]. For a strictly seasonal (i.e. no noise) time series {Yt} with constant period d and
period mean zero it holds that

Yt+d = Yt , ∀t and
t+1

∑
s=t−d+2

Ys = 0, ∀t.

Such a time series is governed by the recursions

Yt+1 =−Yt − . . .−Yt−d+2. (8.1)

In order to allow for random variations from strict periodicity, one introduces a white noise
term {St} with mean zero in equation (8.1).

Yt+1 =−Yt − . . .−Yt−d+2 +St . (8.2)

By this generalisation the time series {Yt} is now allowed to change the shape of its pe-
riodic signal (Yt , . . . ,Yt+d−1), but not the period d itself! Equation (8.2) represents an
auto-regressive time series and can be easily transformed into a state-space model, cf. [31,
p.266f].

8.1.2 The model with Noise and Time-Dependent Period: ATS

Here, we generalise the above model to a state-space model - called ATS (Adaptive Time-
dependent Seasonal) - with noise and time-dependent period d(t) > 0,∀t = 1,2, . . . ,T . Let
D := max{d(t), t = 1,2, . . . ,T} be the maximum period during the times t = 1,2, . . . ,T , and
let the observations be denoted by the random variables Yt , t = −D + 3, . . . ,0,1,2, . . . ,T .1

Strict time-dependent periodicity of {Yt} can be expressed by

Yt+1 =−Yt − . . .−Yt−d(t)+2. (8.3)

Again, to allow for random variations from strict time-dependent periodicity, one introduces
a white noise term {St} in equation (8.3) with mean zero, which leads to

Yt+1 =−Yt − . . .−Yt−d(t)+2 +St . (8.4)

A corresponding D− 1-dimensional state space model including the possibility to handle
observation noise can be defined analogously to [31, p.266f]. The states {Xt} are formed by
the vectors

Xt :=


Yt

Yt−1
...

Yt−D+2


1Similar to the model with constant period, we require observations to be known for the times t = −D +

3, . . . ,0.
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The observations {Yt} are recovered from the states by the observation equation

Yt = GtXt +Wt =
(

1 0 . . . 0
)

Xt +Wt ,

where Wt is a possibly non-zero observation noise. Finally, the state equation is given by

Xt+1 = FtXt +Vt ,

with

Vt =


St

0
...
0


and

Ft =


ft

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,

where for every t the row vector ft has length D−1 and entries defined by

ft(k) :=

{
−1 if k ≤ d(t)−1
0 otherwise.

To estimate the artefact and the artefact free parts of a CPR corrupted ECG signal one
assumes non-zero observation noise Wt which models the artefact removed ECG signal.

8.1.3 Calculating the Time-Dependent Period

The estimation of the (usually time-dependent) CPR-period of a CPR corrupted ECG signal
can be accomplished by means of the (windowed) sample autocorrelation function.

For a weakly stationary time series2 {Xt} the autocorrelation function (ACF) is defined
for every h ∈ Z as

ρ(h) :=
Cov(Xt ,Xt+h)

Var(Xt)

and is independent of t. For n realisations, i.e., observed data {x1, . . . ,xn} of the time series
{Xt} the sample ACF ρ̂ is an estimate of ρ . It is computed using the sample autocovariance
function (sample ACVF) γ̂ defined as

γ̂(h) :=
1
n

n−|h|

∑
t=1

(xt+|h|− x̄)(xt − x̄), n < h < n

ρ̂(h) :=
γ̂(h)
γ̂(0)

Now, the maximum sample ACF value in a specified range of lags h ∈ Z can be used as
an estimate of the period of a time series. If CPR reference signals (cf. subsection 8.2.1)
are available, such as the chest compression force or depth, then such signals are preferable

2For the definition of stationarity cf. e.g. [31]
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to the CPR corrupted ECG signal for period estimation, because they usually contain no (or
less) noise. Figures 8.1 and 8.2 show the sample ACF and its maximum value in a specified
range for an arterial blood pressure signal during CPR and for a VF ECG signal during CPR,
respectively. The arterial blood pressure signal would be a good CPR reference signal, but
is not available in practice.
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Figure 8.1: ACF of an arterial blood pressure signal during CPR at a sampling frequency of
30 Hz.

The windowed sample ACF estimates the current ACF (and thus the current period) of
a time-dependent periodic signal by means of the sample ACF in a symmetric time window
around each time point. Figures 8.3 and 8.4 show the windowed sample ACF and its maxi-
mum values in a specified range for an arterial blood pressure signal during CPR and for a
VF ECG signal during CPR, respectively.

8.2 Regression on Reference Signals

Regression on reference signals can be used to estimate the CPR part of a corrupted ECG
signal. The artifact free signal is estimated as the regression error.

8.2.1 Reference Signals

Reference signals are signals which correlate with the artefacts [55, 78, 94, 1] and have
already been mentioned in the context of CPR period estimation, cf. subsection 8.1.3.
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Figure 8.2: ACF of a VF ECG signal during CPR at a sampling frequency of 30 Hz.

Various reference signals conceivable:

• Chest Compression Force, Acceleration, and Depth: see also subsection 5.2.1

• Thorax Impedance: used as a reference signal for ventilation (and compression) in-
duced artefacts.

• ECG common: used as a reference signal for static electricity type artefact compo-
nents.

• Logical signals: indicate the beginning of each chest compression and can be used
together with the compression acceleration signal to estimate the compression depth
[78, 2].

• Blood Pressures: would be a good CPR reference signals, but are invasive parameters
and thus not available in out-of-hospital practice. However, in animal models, blood
pressures are often recorded.

Lagging of Reference Signals In many cases it is appropriate to not only regress on one
reference signal, which was recorded synchronously with the CPR corrupted ECG signal,
but also to regress on lagged copies of the reference signal. In this case, the OLS regression
can be viewed as finding a minimum least squares filter.
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Figure 8.3: Windowed ACF of an arterial blood pressure signal during CPR at a sampling
frequency of 30 Hz.

8.2.2 OLS

Probably the easiest regression model consists in OLS, cf. subsection 4.3.2. Let

{yt}t=1,...,T

denote observations of a CPR corrupted ECG signal and

{Rt,k}k=1,...,m
t=1,...,T

the matrix of m reference signals at the same sampling time points. Either one subtracts
the means of all signals, or, in order to estimate the mean of y one includes an additional
constant reference signal consisting of 1s. Anyway, OLS corresponds to finding a column
vector β̂ ∈ Rm, such that

‖ y−Rβ̂ ‖

is minimal for all β ∈ Rm in the Euclidean norm. The OLS estimate

ŷ := Rβ̂

is an estimate the CPR part of a corrupted ECG signal, whereas the regression errors, or
residuals

e := y− ŷ
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Figure 8.4: Windowed ACF of a VF ECG signal during CPR at a sampling frequency of 30
Hz.

form an estimate of the artifact removed ECG signal.
Figures 8.5 and 8.6 show the result of a OLS regression on various lagged copies of the

arterial blood pressure signal in a porcine model of CPR. Negative (shift towards the past)
and positive lags (shift towards the future) are used. In both directions the OLS regression
coefficients are non-zero. Thus also future parts of the reference signal are useful for esti-
mating the CPR artefact part of a corrupted signal. This fact is not a hindrance for practical
on-line implication as it leads only to a short time delay.

8.2.3 A State-Space Model: ALR

As pointed out at the end of the introduction (p. 91), the coupling to the chest compressions
and the shape of the CPR ECG artefacts can change in the course of time. An adaptive
regression model could handle these features. We propose a state-space regression model
- called ALR (Adaptive Lagged Regression) - whose states are time-varying regression
coefficients, cf. [21]. This is generalisation of the OLS model having constant coefficients.
Let

{yt}t=1,...,T

denote observations of a CPR corrupted ECG signal and

{Rt,k}k=1,...,m
t=1,...,T
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Figure 8.5: OLS regression of a CPR corrupted VF ECG signal on lagged copies of the
arterial blood pressure signal in a porcine model of CPR. The regression coefficients are
plotted in Figure 8.6.

the matrix of m (lagged copies of) reference signals at the same sampling time points. The
observation equation reads

Yt = GtXt +Wt , where

Gt = (Rt,1, . . . ,Rt,m), and

Wt is a possibly non-zero observation noise, which models the artifact removed ECG signal.
The state equation is given by

Xt+1 = FtXt +Vt ,

with

Ft =


1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1

=: 1m.

The state transition matrices Ft are thus just the m×m identity matrix 1m. The state noise
vector Vt is assumed to have a covariance matrix Q = σ2

v 1m. The case σv = 0 reproduces
the OLS model, where the regression coefficients do not change in the course of time. A
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Figure 8.6: OLS regression coefficients corresponding to Figure 8.5. A lag of, for example,
-8 means that the original reference signal is shifted 8 samples towards the past, in other
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state noise covariance matrix Q 6= 0 allows for a dynamic evolution of the states, or, in other
words, for adaptive regression coefficients.
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This chapter deals with a small evaluation of the above proposed two new Kalman
models ATS and ALR for CPR artefact removal. We apply the models to an additive mixture
of porcine asystole ECG signals during CPR and human VF ECG signals. Optimal models
are found by MLE and MMSE optimisation, cf. section 5.3, using either a linear grid
search or reduced methods, c.f. proposition 5.2 and subsection 5.3.2. We evaluate the rSNR
and compare the mean frequency of the original VF signal to the mean frequency of the
estimated VF signal after CPR artefact removal.

9.1 Data

In order to keep the computation time for the different models, optimisation procedures,
search methods etc “acceptable”, only seven porcine asystole ECG signals during CPR
were mixed with seven human VF ECG signals resulting in 49 mixed signals. The MMSE
optimisation computes the MSE of the current estimation by knowledge of the true CPR
artefact signal (or VF signal). This is obviously not known in practice. Therefore, optimi-
sation and evaluation have to be divided into learning and testing data sets, i.e. the optimal
values for the noise variances in the state-space models are estimated on the basis of a 7×7
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learning data set, and the mean variances are then evaluated on a disjoint 7×7 testing data
set.

All CPR artefact recordings include arterial blood pressure signals, lagged copies of
which were used as reference signals in the Kalman regression model, c.f. subsection 8.2.3.
Figures 9.1, 9.2, 9.3, and 9.4 show the learning and testing data sets of CPR and VF signals
used.

9.1.1 Sampling and Mixing

The human artefact free VF signals are originally sampled at 375 Hz, whereas the porcine
CPR artefact signals and their reference signals are originally sampled at 1000 Hz. For the
purpose of CPR artefact removal by means of our models, it suffices to work at a sampling
frequency of approx. 20-50 Hz, which usually covers the frequencies contained in the CPR
artefact signal. This is because our models estimate the CPR artefact signal and handle the
VF part as residuals. Therefore, the following procedure can be applied:

1. Down-sample the CPR and VF signals from their original sampling frequencies to a
sampling frequency f ∈ [20,50], which results in the two signals VF f and CPR f .

2. Normalise VF f and CPR f and scale CPR f such that a desired SNRmix is accom-
plished, c.f. subsection 7.1.1.

3. Estimate the CPR part of the mixture by means of the chosen model and the chosen
optimisation procedure resulting in the signal CPRest

f

4. Under the assumption that all frequencies of the CPR artefact signal are contained
in [0, f /2], the restored SNR can be computed at the sampling frequency f by cal-
culating the difference between the scaled true CPR signal and its estimate from the
model, c.f. subsection 7.1.1.

5. In order to get an estimate of the VF part including as much frequencies as possible,
one up-samples CPRest

f to the original VF sampling frequency (375 Hz for our data),
and subtracts it from the CPR+VF mixture at this sampling frequency.

9.2 Optimisation

This section deals with the methods to select an optimal model from a given family of
models.

9.2.1 Objective Functions: MLE, rSNR

For both the ATS and the ALR model we will apply MLE as well as maximise the rSNR.
MLE was presented in subsection 5.3.1 and amounts to applying the Kalman predictor
recursions to the different models in the family. Maximising the rSNR is equivalent to min-
imising the MSE, c.f. 7.1.1. The estimated observations can result from predicted, filtered
or fixed-point smoothed state-estimates. As already pointed out, computing the MSE re-
quires knowing the true CPR artefact signal. Therefore, in the case of rSNR maximisation,
optimisation and evaluation have to be divided into learning and testing data sets.
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Figure 9.1: Artefact free VF signals of the learning data set.
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Figure 9.2: Artefact free VF signals of the testing data set.
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Figure 9.3: CPR artefact signals of the learning data set.
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Figure 9.4: CPR artefact signals of the testing data set.
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9.2.2 Model Families and Search Methods

Both the ATS and the ALR model are structural state-space models where the transition and
observation matrices are known, c.f. 5.3.1. Thus, an ATS or ALR model is determined by
giving

• the variance σ2
v of the state noise, remember Q = σ2

v 1m for the ALR model, and
Q = σ2

v (1,0, . . . ,0)T for the ATS model.

• the variance σ2
w of the observation noise,

• the initial state predictor X̂1, and

• the initial error covariance matrix Ω1.

One-Point Model Families The easiest case is a model family consisting of only one
model. For our purposes we prescribe the variances σ2

v and σ2
w, whereas - to keep the

number of parameters to be optimised small - the initial state predictor X̂1 and the initial
error covariance matrix Ω1 are determined depending on the chosen model as follows.

For the ATS model the initial state predictor X̂1 is estimated as the periodic mean of the
observations, i.e. for an estimated period of say d samples the observation signal is divided
into adjacent segments of d samples and the periodic mean is computed as the mean vector
of the segments. The initial error covariance matrix Ω1 is set to zero.

For the ALR model the initial state predictor X̂1 is estimated by means of OLS regres-
sion using the Matlab command regress. The initial error covariance matrix Ω1 is then
estimated via the 95% confidence intervals (a,b) of the OLS regression coefficients which
are also returned by regress: For each regression coefficient the variance of a normal fit
of its distribution is computed from the 95% confidence intervals as [(b− a)/(2 · 1.96)]2.
The diagonal matrix with these entries for each regression coefficient is then used as initial
error covariance matrix.

The time, which the Kalman recursions potentially need to tune in, can be excluded
from the maximum likelihood or MSE evaluation of the model.

Grid Search A linear grid search in the 2-dimensional space of state and observation
noise variances is accomplished by prescribing two variance vectors

Σ
2
v = (σ2

v (1), . . . ,σ2
v (n)) and Σ

2
w = (σ2

w(1), . . . ,σ2
w(m)).

Each combination of variances then defines a model, where the initial state predictor X̂1 and
the initial error covariance matrix Ω1 are determined as in the preceding paragraph. From
the n×m models in the family the one with the maximum likelihood or the minimum MSE
is chosen as optimal.

Reduced Methods Reduced methods were presented in proposition 5.2 and subsection
5.3.2. They come with two main advantages compared to the grid search:

• The number of searched parameters is reduced.

• The initial state predictor X̂1 and the initial error covariance matrix Ω1 need not be
prescribed by some self-made rules as described in the preceding paragraphs. The
initial state predictor is estimated optimally, and Ω1 is set to zero.
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9.3 Evaluation

After having found the optimal model out of a given model family and according to some
search method the model can be evaluated in different directions.

MLE has the advantage that the true CPR artefact signal need not be known for opti-
misation. The unknown model parameters are found for each signal using only this signal,
i.e, the corrupted ECG signal and, in the case of the ALR model, the reference signal. MLE
individually finds the optimal model parameters, no splitting into learning and testing data
sets is needed. Therefore the optimal model can be evaluated on each signal of the data set
on which the optimisation was processed.

As already pointed out, in the case of MSE optimisation the true CPR signal has to
be known and thus evaluation has to be performed on an extra data set, which is disjoint
from the learning data set on which optimisation was performed. The optimal values for the
noise variances in the state-space models are found from the learning data set, and the mean
variances are then used for evaluation on a disjoint testing data set.

In general, all three types of Kalman recursions (prediction, filtering, and fixed-point
smoothing) can be applied in the evaluation. Furthermore, the time, which the Kalman
recursions potentially need to tune in, can be excluded from the evaluation. Finally, we will
quantify the quality of our removal algorithms by the restored SNR and by comparing the
mean frequency of the original VF signal to the mean frequency of the estimated VF signal
after CPR artefact removal, c.f. section 7.1.

9.4 Results

In order not to overcrowd this section we compute the results for the different models and
optimisation methods only using the reduced methods omitting the grid search.

9.4.1 The ATS Model

As the signal segments being investigated are very short (5 seconds length) a constant period
was estimated for each ATS model (Fig. 9.5).
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Figure 9.5: Estimation of the constant period of the signal segment by searching the maxi-
mum of the ACF in a specified range, shown for an example dataset.

In the following, typical optimisation and evaluation results in the case of MLE are
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given exemplarily for one of the totally 49 data sets. The original artefact free VF ECG
signal and the original CPR artefact signal were detrended1, normalised, and resampled to
40 Hz, and the SNR was chosen to be -3 dB. The optimal MLE model was evaluated using
the Kalman predictor.

Fig. 9.6 depicts the estimation of the CPR part of the mixed signal and its separation into
estimated VF and CPR signals. All signals in Fig. 9.6 are plotted at the model frequency
of 40 Hz. The rSNR at this sampling frequency is 4.03 dB. The estimated optimal state-
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Figure 9.6: Original and estimated signals at the model frequency of 40 Hz, shown for an
example dataset.

space variance σ2
v of the example dataset is zero. Thus the Kalman gain is constantly

zero. The estimated optimal observation-noise variance σ2
w is 1.03. Fig. 9.7 shows the

original and the estimated signals at after resampling to 375 Hz. The rSNR at this sampling
frequency is 4.12 dB. Fig. 9.8 gives a closer look to the differences due to the different
sampling frequencies. FS denotes sampling frequency. Fig. 9.9 depicts the powerspectra of
the original and estimated CPR and VF signals after resampling to 375 Hz.

MLE optimisation

Now we give the results for all 49 datasets. The original artefact free VF ECG signals and
the original CPR artefact signals were detrended, normalised, and resampled to 20, 30, and
40 Hz, and the SNR was chosen to be -5, 0, and 5 dB. The optimal MLE models were
evaluated using the Kalman predictor. Table 9.1 shows the results.

1using the Matlab command detrend
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Figure 9.7: Original and the estimated signals at after resampling to 375 Hz.
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sampling frequencies.
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Figure 9.9: Powerspectra of the original and estimated CPR and VF signals after resampling
to 375 Hz. FSmodel denotes the sampling frequency used for the Kalman model.

FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.05±0.31 0.02±0.12 0.01±0.04
σ̂w

2 1.46±0.53 1.17±0.28 0.99±0.15
rSNR 1.81±3.17 3.58±2.93 4.88±2.26
∆(MF) 0.93±0.76 0.76±0.64 0.54±0.39

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.46±0.42 1.15±0.22 0.96±0.14
rSNR 1.83±2.36 3.35±2.20 4.40±1.57
∆(MF) 0.92±0.72 0.79±0.61 0.53±0.43

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.47±0.43 1.12±0.23 0.98±0.14
rSNR 1.71±2.29 3.34±2.00 4.58±1.60
∆(MF) 1.00±0.66 0.74±0.55 0.58±0.42

Table 9.1: Results of the MLE optimisation for the ATS model. FS denotes the model
sampling frequency, and ∆(MF) denotes the difference of the mean frequency of the original
VF signal and the mean frequency of the estimated VF signal after CPR artefact removal.
All values are given as mean ± standard deviation.
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FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.08±0.55 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.84±3.15 3.70±2.86 5.06±2.55
∆(MF) 0.93±0.75 0.75±0.61 0.53±0.40

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.83±2.36 3.35±2.21 4.41±1.58
∆(MF) 0.92±0.72 0.80±0.61 0.53±0.43

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.01
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.71±2.29 3.34±2.00 4.59±1.60
∆(MF) 1.00±0.66 0.75±0.55 0.60±0.41

Table 9.2: Results of the MSE learning optimisation for the ATS model. FS denotes the
model sampling frequency, and ∆(MF) denotes the difference of the mean frequency of the
original VF signal and the mean frequency of the estimated VF signal after CPR artefact
removal. All values are given as mean ± standard deviation.

MSE optimisation

Learning The same 49 datasets as for MLE optimisation were used as learning datasets.
The observation noise variance σ2

w was always set equal to 1, because the MSE depends
only on the ratio of the variances Q∗ = Q

σ2
w

, cf. Corollary 5.3 and Proposition 5.1. The
Kalman predictor recursions were chosen both for optimising and for evaluating. Table 9.2
shows the results of the learning procedure.

Testing The mean optimal values of the noise variances found from the learning data set
for each sampling frequency were used for evaluation on disjoint 49 testing datasets. The
mean variances were σ2

v = 0.027 for FS= 20 Hz, σ2
v = 0.001 for FS= 30 Hz, and σ2

v = 0.001
for FS= 40 Hz. Testing with fixed variances corresponds to a one-point model family, cf.
subsection 9.2.2. The Kalman predictor recursions were chosen for evaluating, and the first
second was excluded from the evaluation of the model. The initial state predictor and the
initial error covariance matrix were set as described in subsection 9.2.2. Table 9.3 shows
the results of the testing procedure.

9.4.2 The ALR Model

In the following, typical optimisation and evaluation results in the case of MLE are given
exemplarily for one of the totally 49 data sets. The original artefact free VF ECG signal
and the original CPR artefact signal were detrended, normalised, and resampled to 30 Hz,
and the SNR was chosen to be -3 dB. The optimal MLE model was evaluated using the
Kalman predictor. The copies of the reference signal were lagged by -0.25 seconds up to
0.10 seconds with a stepsize of 0.05 seconds, cf. Fig. 9.14.
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FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.03±0.00 0.03±0.00 0.03±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 0.65±1.77 2.54±1.73 3.99±1.66
∆(MF) 1.68±0.83 1.03±0.73 0.62±0.47

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.16±2.05 2.70±1.91 4.25±1.46
∆(MF) 0.96±0.94 0.93±0.72 0.52±0.46

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 0.96±2.12 2.87±1.96 4.31±1.55
∆(MF) 0.74±1.03 0.72±0.86 0.48±0.52

Table 9.3: Results using testing data after MSE learning optimisation for the ATS model.
FS denotes the model sampling frequency, and ∆(MF) denotes the difference of the mean
frequency of the original VF signal and the mean frequency of the estimated VF signal after
CPR artefact removal. All values are given as mean ± standard deviation.

Fig. 9.10 depicts the estimation of the CPR part of the mixed signal and its separation
into estimated VF and CPR signals. All signals in Fig. 9.10 are plotted at the model fre-
quency of 30 Hz. The rSNR at this sampling frequency is 3.73 dB. The estimated optimal
state-space variance σ2

v of the example dataset is zero. Thus the Kalman gain is constantly
zero. The estimated optimal observation-noise variance σ2

w is 1.34. Fig. 9.11 shows the
original and the estimated signals at after resampling to 375 Hz. The rSNR at this sampling
frequency is 3.76 dB. Fig. 9.12 gives a closer look to the differences due to the different
sampling frequencies. FS denotes sampling frequency. Fig. 9.13 depicts the powerspectra
of the original and estimated CPR and VF signals after resampling to 375 Hz. Fig. 9.14
shows the original mixed signal and its CPR part estimation, lagged copies of the reference
signal and the time course of the regression coefficients, i.e. the states, all at 30 Hz.

MLE optimisation

Now we give the results for all 49 datasets. The original artefact free VF ECG signals and
the original CPR artefact signals were detrended, normalised, and resampled to 20, 30, and
40 Hz, and the SNR was chosen to be -5, 0, and 5 dB. The optimal MLE models were
evaluated using the Kalman predictor. Table 9.4 shows the results.

MSE optimisation

Learning The same 49 datasets as for MLE optimisation were used as learning datasets.
The observation noise variance σ2

w was always set equal to 1, because the MSE depends
only on the ratio of the variances Q∗ = Q

σ2
w

, cf. Corollary 5.3 and Proposition 5.1. The
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Figure 9.10: Original and estimated signals at the model frequency of 30 Hz, shown for an
example dataset.
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Figure 9.11: Original and the estimated signals at after resampling to 375 Hz.
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Figure 9.12: Comparison of the original and estimated CPR and VF signals at the different
sampling frequencies.
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Figure 9.13: Powerspectra of the original and estimated CPR and VF signals after resam-
pling to 375 Hz. FSmodel denotes the sampling frequency used for the Kalman model.
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Figure 9.14: The figure shows the original mixed signal and its CPR part estimation, lagged
copies of the reference signal and the time course of the regression coefficients, i.e. the
states, all at 30 Hz.

FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.60±0.49 1.13±0.17 0.98±0.08
rSNR 2.00±3.02 6.11±2.70 9.24±2.41
∆(MF) 0.84±0.56 0.37±0.35 0.12±0.19

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.01±0.03 0.01±0.02 0.00±0.02
σ̂w

2 1.47±0.68 1.05±0.36 0.93±0.25
rSNR 1.22±3.18 5.21±3.62 8.55±3.85
∆(MF) 0.55±1.00 0.19±0.65 0.01±0.44

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.05±0.05 0.03±0.03 0.02±0.03
σ̂w

2 0.80±1.01 0.70±0.61 0.61±0.49
rSNR 1.35±3.30 2.16±4.57 4.52±5.76
∆(MF) 1.32±2.13 1.03±1.86 1.14±1.69

Table 9.4: Results of the MLE optimisation for the ALR model. FS denotes the model
sampling frequency, and ∆(MF) denotes the difference of the mean frequency of the original
VF signal and the mean frequency of the estimated VF signal after CPR artefact removal.
All values are given as mean ± standard deviation.
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FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 2.00±3.02 6.11±2.71 9.26±2.42
∆(MF) 0.84±0.56 0.38±0.35 0.13±0.19

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.92±2.71 6.14±2.51 9.46±2.33
∆(MF) 0.77±0.57 0.34±0.34 0.09±0.18

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 2.82±19.71 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.84±3.10 6.16±2.72 9.48±2.43
∆(MF) 0.68±0.72 0.31±0.31 0.08±0.16

Table 9.5: Results of the MSE learning optimisation for the ALR model. FS denotes the
model sampling frequency, and ∆(MF) denotes the difference of the mean frequency of the
original VF signal and the mean frequency of the estimated VF signal after CPR artefact
removal. All values are given as mean ± standard deviation.

Kalman predictor recursions were chosen both for optimising and for evaluating. Table 9.5
shows the results of the learning procedure.

Testing The mean optimal values of the noise variances found from the learning data set
for each sampling frequency were used for evaluation on disjoint 49 testing datasets. The
mean variances were σ2

v = 0.000 for FS= 20 Hz, σ2
v = 0.000 for FS= 30 Hz, and σ2

v = 0.938
for FS= 40 Hz. Testing with fixed variances corresponds to a one-point model family, cf.
subsection 9.2.2. The Kalman predictor recursions were chosen for evaluating, and the first
second was excluded from the evaluation of the model. The initial state predictor and the
initial error covariance matrix were set as described in subsection 9.2.2. Table 9.6 shows
the results of the testing procedure.

9.5 Discussion and Future Work

9.5.1 Discussion of Results

Comparison of Results

Let’s first discuss the ATS and ALR model results on its own and then compare them.

ATS models: The estimated state-space variance σ2
v of the MLE ATS models decreases

with increasing SNR for FS=20Hz. It is neglectable for the remaining FS values. The esti-
mated observation-space variance σ2

w is comparable for the different FS values and clearly
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FS= 20 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.91±1.50 5.63±1.33 8.13±1.41
∆(MF) 0.96±0.50 0.45±0.29 0.21±0.16

FS= 30 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.00±0.00 0.00±0.00 0.00±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 1.45±1.89 5.46±1.57 8.42±1.39
∆(MF) 0.48±0.56 0.19±0.29 0.05±0.16

FS= 40 SNR=-5 SNR=0 SNR=5
σ̂v

2 0.94±0.00 0.94±0.00 0.94±0.00
σ̂w

2 1.00±0.00 1.00±0.00 1.00±0.00
rSNR 3.56±1.64 2.85±1.23 2.58±1.11
∆(MF) 2.89±0.96 2.89±0.82 2.88±0.76

Table 9.6: Results using testing data after MSE learning optimisation for the ALR model.
FS denotes the model sampling frequency, and ∆(MF) denotes the difference of the mean
frequency of the original VF signal and the mean frequency of the estimated VF signal after
CPR artefact removal. All values are given as mean ± standard deviation.

decreases with increasing SNR. The rSNR and ∆(MF) are clearly better for increasing SNR,
however, they are quite independent of the selected FS.

The estimated state-space variances σ2
v of the “learning” MSE ATS models are almost

always neglectable. This is promising in order to choose their mean values for testing
purposes. Note, that the observation noise variance σ2

w – without loss of generality – is
always set to 1, because the MSE depends only on the ratio of the variances Q∗ = Q

σ2
w

, cf.
Corollary 5.3 and Proposition 5.1. Both rSNR and ∆(MF) values of the “learning” set are
comparable with the MLE results. This is surprising, because MLE does not know the true
CPR signal in contrast to MSE optimisation.

The rSNR values of the “testing” ATS models are explicitly worse compared to the
“learning” results. This may be because of the different data sets. However, the initial state
is estimated during testing via a periodic mean vector, cf. 9.2.2, and this initial state is not
altered much over time because of the very small or zero state-space variances σ2

v . Maybe
a slightly bigger state-space variances σ2

v would yield better results.

ALR models: The estimated state-space variance σ2
v of the MLE ALR models increases

with increasing FS and clearly decreases with increasing SNR. The estimated observation-
space variance σ2

w decreases with increasing FS and clearly decreases with increasing SNR.
These results suggest the interpretation that the MLE ALR models adopt the states more
for increasing FS. This could be an explanation of the fact that the rSNR decreases with
increasing FS. The ∆(MF) values are surprisingly best for FS=30Hz.

With the exception of FS=40Hz and SNR=-5, the estimated state-space variances σ2
v

is neglectable for the “learning” MSE ALR models. The rSNR is comparable to the MLE
values at FS=20Hz, however, it does not substantially change for greater FS values. The
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∆(MF) values are better for increasing SNR and FS values.
The rSNR values of the “testing” ALR models are worse compared to the “learning”

results with the exception of FS=40Hz and SNR=-5. The ∆(MF) values are similar or worse
compared to the MLE results. They are best for FS=30Hz. The high mean σ2

v value taken
from the “learning” set for FS=40Hz produces bad rSNR values in the “testing” sets. This
suggests the interpretation that an ALR model with a too high σ2

v value adopts its states too
much, such that too much of the CPR corrupted signal is “explained” as CPR.

Comparison of models: In the case of MLE, the rSNR values at FS=20Hz are much
better for the ALR model compared to the ATS model. Likewise, at FS=20Hz and 30Hz
the ALR ∆(MF) values are better. Thus, at small sampling rates the ALR models clearly
outperform the ATS models, whereas at the high sampling rate FS=40Hz the ALR models
loose performance, while the ATS models stay at their low performance.

In the case of MSE optimisation, the rSNR of the testing dataset is always better for the
ALR models. The ∆(MF) values of the ATS models are only better at FS=40Hz.

The general predominance of the ALR model over the ATS model is presumably due to
the extra information in the ALR model which enters through the lagged reference signals.

Comparison of Estimation Methods and General Considerations

In the majority of cases, the MLE optimisation method gives better rSNR and ∆(MF) values
than the “testing” models after MSE “learning”.

At higher sampling rates especially the ALR models tend to loose performance. A
plausible explanation could be the following: Both, the ATS and the ALR models model
the VF part of a CPR corrupted signal as observation noise. The optimisation procedures
MLE and MMSE search for model parameters for which the model explains as much as
possible as projected states, i.e. CPR, minimising thereby the observation noise. For too
high sampling rates, this adoption is too high.

Practical Implications and Discussion

In practice, the model variances σ2
v and σ2

w may vary during the course of time. In order
to incorporate this, one could divide a long ECG record into time segments and apply e.g.
MLE to every segment individually.

In view of the particular practical purpose of CPR artefact removal, the question has to
be answered, which parameter should be optimised: the rSNR (which amounts to minimis-
ing the MSE), the likelihood, ∆(MF), or even one or both model variances σ2

v and σ2
w.

In the investigations presented here, the copies of the reference signal were lagged by
some predefined time values, namely from -0.25 seconds up to 0.10 seconds with a stepsize
of 0.05 seconds, cf. Fig. 9.14. This choice was not justified by some optimisation procedure.

9.5.2 Future Work

A lot more analysis could be made in some future work.

• Long time evaluations together with spectrogram evaluations could be made.

• The performance of detection and scoring algorithms could be investigated, cf. sub-
section 7.1.2.



126 CHAPTER 9. DATA, OPTIMISATION AND EVALUATION RESULTS

• The two proposed algorithms could be optimised and evaluated on the basis of more
datasets.

• The two proposed algorithms could be compared to existing algorithms on the basis
of common datasets, cf. section 7.2.

• The two proposed algorithms are state-space models and could thus be combined [31,
p.267].

• The choice of time lags in the ALR model could be optimised.

• The estimated CPR parts could be smoothed by some standard filtering procedure in
order to exclude too high frequencies.

• The VF part of a CPR corrupted signal could be modelled differently than by white
noise, e.g. by some AR process.
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Rating the VF ECG Signal
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10.1 Overview

It was already pointed out in the introduction (cf. subsection 1.3.1) that all key questions
of a diagnostic approach to defibrillation as presented there could be answered by contin-
uously providing one (or more) appropriate parameters which are derived from physical
measurements and reflect the actual probability for ROSC of a hypothetical defibrillation
attempt. The following two publications present the performance and problems of different
ECG parameters for that purpose.
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Abstract

We estimated the predictive power with respect to defibrillation outcome of ventricular fib-
rillation (VF) mean frequency (FREQ), mean peak-to-trough amplitude (AMPL), and their
combination. We examined VF electrocardiogram signals of 64 pigs from 4 different car-
diac arrest models with different durations of untreated VF, different durations of cardiopul-
monary resuscitation, and use of different drugs (epinephrine, vasopressin, N-nitrol-arginine
methyl ester, or saline placebo). The frequency domain was restricted to the range from 4.33
to 30 Hz. In the 10-s epoch between 20 and 10 s before the first defibrillation shock, FREQ
and AMPL were estimated. We introduced the survival index (SI; 0.68 Hz−1·FREQ + 12.69
mV−1·AMPL) by use of multiple logistic regression.

Kruskal-Wallis nonparametric one-way analysis was used to analyze the different por-
cine models for significant difference. The variables FREQ, AMPL, and SI were compared
with defibrillation outcome by means of univariate logistic regression and receiver operating
characteristic curves. SI increased predictive power compared with AMPL or FREQ alone,
resulting in 89% sensitivity and 86% specificity. The probabilities of predicting defibril-
lation outcome for FREQ, AMPL, and SI were 0.85, 0.89 and 0.90, respectively. FREQ,
AMPL, and SI values were not sensitive in regard to the four different cardiac arrest models
but were significantly different for vasopressin and epinephrine animals.

Introduction

During cardiopulmonary resuscitation (CPR), the international guidelines recommend de-
fibrillation 1 to 3 min after drug administration [17]. Unfortunately, this strategy does not
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address individual response to CPR efforts, rendering defibrillation attempts in many cases
a matter of chance. Thus, a lucky shock may convert ventricular fibrillation (VF) into return
of spontaneous circulation (ROSC) with subsequent long-term survival, whereas less fortu-
nate defibrillation attempts may simply cause massive thermal injury to the heart [161, 143],
which may cause fatal cardiac failure after ROSC in the intensive care unit. To improve de-
fibrillation success, algorithms to analyze VF wave forms during CPR have been developed.
However, VF analysis is usually based on only one variable derived from the electrocardio-
gram (ECG) signal of the fibrillating heart. It has been demonstrated in clinical and animal
studies that the amplitude and frequency of the ECG signal during VF were good predictors
of defibrillation outcome [11].

When the predictive power of VF variables and threshold values for outcome predic-
tion are compared, careful distinction has to be made between human and animal studies,
short versus prolonged duration of untreated VF, VF during CPR and untreated VF, drug
effects, and different VF analysis strategies. It is surprising that few attempts have been
made to combine VF analysis variables to improve the prediction of defibrillation success.
Although predictive power in regard to defibrillation success has been improved by combin-
ing median and dominant frequency [32], combining amplitude and the number of baseline
crossings per second [108], combining mean amplitude and dominant frequency [115], and
combining four spectral features [52], both sensitivity (Se) and specificity (Sp) remained
disappointingly low. Moreover, because human VF wave forms are more difficult to an-
alyze than those of animals in VF because of a larger effect of chest compression-related
artifacts, it seems obvious that a new VF analysis strategy needs to be extremely good to
successfully extrapolate laboratory experience into clinical practice.

In this study, we retrospectively examined VF data from 64 pigs undergoing CPR. Fur-
thermore, we introduced a combination of mean peak-to-trough amplitude (AMPL) and
mean frequency (FREQ), denominated as survival index (SI). Our hypothesis was that SI is
a more effective predictor of defibrillation outcome than AMPL or FREQ.

Methods

This project was approved by the Austrian Federal Animal Investigational Committee, and
the animals were managed in accordance with American Physiological Society and institu-
tional guidelines. This study was performed according to Utstein-style guidelines [79] on
healthy, 12- to 16-wk-old swine (Tyrolean domestic pigs) of either sex weighing 30 to 40
kg. The animals were fasted overnight but had free access to water. The pigs were pre-
medicated with azaperone (neuroleptic drug; 4 mg/kg IM) and atropine (0.1 mg/kg IM) 1
h before surgery, and anesthesia was induced with thiopental (7 to 15 mg/kg IV). After in-
tubation during spontaneous respiration, the pigs were ventilated with a volume-controlled
ventilator (EV-A; Draeger, Lübeck, Germany) with 100% oxygen at 20 breaths/min and
with a tidal volume adjusted to maintain normocapnia. Anesthesia was maintained with
propofol (6 to 8 mg · kg−1 · h−1) and a single dose of piritramide (30 mg). We achieved
muscle paralysis with 8 mg of pancuronium after intubation and subsequently with repeated
doses of 8 mg of pancuronium as needed. Lactated Ringer’s solution (6 mL · kg−1 · h−1)
and a 3% gelatin solution (4 mL · kg−1 · h−1) was administered in the preparation phase
before the induction of cardiac arrest and in the postresuscitation phase. A standard lead
III ECG was used to monitor cardiac rhythm; depth of anesthesia was judged according
to blood pressure, heart rate, and electroencephalography (Neurotrac; Engström, Munich,
Germany). If cardiovascular variables or electroencephalography indicated a reduced depth
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of anesthesia, we increased the propofol dose, and additional piritramide was given. Body
temperature was maintained with a heating blanket between 38.0◦C and 39.0◦C.

A 7F catheter was advanced into the descending aorta via femoral cutdown for measure-
ment of arterial blood pressure. Another 7F catheter was placed into the right atrium via
femoral cutdown for drug administration. Blood pressures were measured with salinefilled
catheters attached to pressure transducers (model 1290A; Hewlett-Packard, Böblingen, Ger-
many), which were calibrated to atmospheric pressure at the level of the right atrium.

The data of four different, but similar, partly previously published models of cardiac
arrest [91, 92, 153, 154], including 64 pigs, were analyzed retrospectively (Fig. 10.1, Ta-
ble 10.1). In one model, after 4 min of cardiac arrest, followed by 3 min of basic life

time course of experiment

eventual drug 
administration

cardiac
arrest

BLS
CPR

untreated
VF

different drug 
administrations

ECG tracings
for analysis

defibrillation
attempts

ROSC or
no ROSC

Figure 10.1: Common time course of the experimental protocols. VF = ventricular fib-
rillation; BLS = CPR basic life support cardiopulmonary resuscitation; ROSC = return of
spontaneous circulation; ECG = electrocardiogram.

Table 10.1: Different Models of Cardiac Arrest

Duration Duration Delay to
of cardiac of basic Partly defibrillation No. ROSC/

arrest life support epidural (minutes after total
Model (min) (min) anesthesia cardiac arrest) no. animals

1 4 3 No 22 16/25
2 4 3 No 22 4/11
3 1 3 Yes 19 14/23
4 7 3 No 25 2/5

ROSC = return of spontaneous circulation

support (BLS) CPR, 16 animals were randomly assigned to receive every 5 min either va-
sopressin (0.4, 0.4, and 0.8 U/kg; n = 11) or epinephrine (45, 45, and 200 µg/kg; n 5).
Another nine animals were randomly allocated after 4 min of cardiac arrest, followed by
8 min of BLS CPR, to receive every 5 min either vasopressin (0.4 and 0.8 U/kg; n = 5) or
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epinephrine (45 and 200 µg/kg; n = 4). Defibrillation was attempted after 22 min of cardiac
arrest [153, 154].

In Model 2, BLS CPR was started after 4 min of cardiac arrest, and 11 animals were
randomly assigned to receive N -nitro-L-arginine methyl ester (25 mg/kg; n = 6) or saline
placebo (n = 5) after 3 and 13 min of BLS CPR, respectively. Defibrillation was attempted
after 22 min of cardiac arrest [92].

In Model 3, 30 min before the induction of cardiac arrest, 12 pigs received epidural
anesthesia with bupivacaine; another 11 pigs received only a saline administration epidu-
rally. After 1 min of cardiac arrest, followed by 3 min of BLS CPR, epidural animals
randomly received every 5 min either epinephrine (45, 45, and 200 µg/kg; n = 6) or vaso-
pressin (0.4, 0.4, and 0.8 U/kg; n = 6); likewise, control animals received every 5 min either
epinephrine (45, 45, and 200 µg/kg; n = 6) or vasopressin (0.4, 0.4, and 0.8 U/kg; n = 5).
Defibrillation was attempted after 19 min of cardiac arrest [91].

In Model 4, after 7 min of cardiac arrest, followed by 3 min of BLS CPR, five animals
were randomly assigned to receive every 5 min either vasopressin (0.4, 0.4, and 0.8 U/kg; n
= 2) or epinephrine (45, 45, and 200 µg/kg; n 3). Defibrillation was attempted after 25 min
of cardiac arrest.

Fifteen minutes before cardiac arrest, 5000 U of heparin was administered IV to prevent
intracardiac clot formation, a single dose of 15 mg of piritramide and 8 mg of pancuronium
was given, and hemodynamic variables, as well as blood gases, were measured. A 50-Hz,
60-V alternating current was then applied via two subcutaneous needle electrodes to induce
VF. Cardiopulmonary arrest was defined as the point at which the aortic pressure decreased
profoundly to hydrostatic pressure and the ECG showed VF; ventilation was stopped at
that point. Closed-chest CPR was performed manually, and mechanical ventilation was
resumed with the same setting as before the induction of cardiac arrest. Chest compression
was always performed by the same investigator at a rate of 80/min, guided by acoustical
audio tones. This investigator was blinded to hemodynamic and end-tidal carbon dioxide
monitor tracings.

All drugs were diluted to 10 mL with normal saline and subsequently injected into the
right atrium, which was followed by a 20-mL saline flush (investigators were blinded to
the drugs). Up to three countershocks were administered with an energy of 3, 4, and 6
J/kg, respectively. If asystole or pulseless electrical activity was present after defibrillation,
the experiment was terminated. ROSC was defined as an unassisted pulse with a systolic
arterial blood pressure of ≥80 mm Hg, lasting for at least 5 min. After finishing the experi-
mental protocol, the animals were killed and necropsied to verify correct positioning of the
catheters and injuries to the rib cage.

The VF ECG signal was monitored continuously and recorded on hard disk by a per-
sonal computerbased data acquisition system (Dewetron, Graz, Austria; DASYLab GmbH,
Mönchengladbach, Germany; and Datalogger, custom-made software). Digitization was
performed at a sampling rate of 1000 Hz and with an amplitude resolution of 12 bits (4096
equal steps between minimal and maximal amplitude). The recorded ECG signals were an-
alyzed with the mathematical software package Matlab (The MathWorks Inc., Natick, MA).
Computation of the areas under receiver operating characteristic (ROC) curves and P val-
ues of their statistical comparison was performed with the software package GraphROC for
Windows (Version 2.0). The signals were divided into consecutive 10-s epochs, and each
epoch was transformed into the frequency domain by Fourier transformation. For signal
analysis, the frequency domain was restricted to the range from 4.33 to 30 Hz, as previ-
ously described [138]. In the 10-s epoch between 20 and 10 s before the first defibrillation
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shock, FREQ and AMPL were estimated. In addition, we introduced the SI by defining

SI = 0.68 Hz−1 ·FREQ+12.69 mV−1 ·AMPL

This corresponds to the introduction of a new coordinate axis in the FREQ-AMPL plane
by means of linear transformation. The coefficients 0.68, SE 0.29 and 12.69, and SE 4.25
were derived from multiple logistic regression by using maximum likelihood estimation
with respect to FREQ and AMPL (explanatory variables) and defibrillation outcome, i.e.,
ROSC or no ROSC after a maximum of three defibrillation attempts (response variable)
[76].

For the four different models of cardiac arrest, a Kruskal-Wallis nonparametric one-way
analysis of variance was performed to look for possible significant differences of FREQ,
AMPL, or SI. For the 24 animals receiving epinephrine and the 29 animals receiving va-
sopressin, a Kruskal-Wallis nonparametric one-way analysis of variance was performed to
look for possible significant differences of FREQ, AMPL, or SI.

The data of VF (FREQ, AMPL, or SI) of the 10-s epoch between 20 and 10 s before
the first defibrillation shock were labeled with 1 in case of ROSC or 0 in case of no ROSC
after a maximum of three defibrillation attempts. Threshold values for AMPL, FREQ, and
SI were computed by fitting the labeled data, by using maximum likelihood estimation, to
the logistic distribution.

P(data) =
1

1+ exp[−s · (data−m)]
,

where P is the probability of successful defibrillation [76]. Variables to be fitted were m, by
definition the threshold value of data, i.e., the value of data associated with a 50% proba-
bility of successful defibrillation, and s, the steepness of the logistic distribution. Estimates
of the SEs for m and s, and the normalized SEs of m, i.e., divided by the respective m, were
computed for all variables.

Accuracy (Ac), Se, Sp, positive predictive value (PPV), and negative predictive value
(NPV) were computed corresponding to selected data and estimated threshold value. ROC
curves were computed for FREQ, AMPL, and SI to determine their value as predictors
of successful defibrillation. These curves plot the true-positive rate (Se) versus the false-
positive rate (1 - Sp) for different threshold values of the respective variable. The area
under the ROC curve represents the probability to which the variable can be used to predict
defibrillation outcome. In fact, both the area under the ROC curve and the Wilcoxon statistic
measure the probability that in a randomly drawn (ROSC or no ROSC) pair the perceived
variable values will allow them to be correctly identified [69]. For the paired testing of the
significance of the difference of areas under two ROC curves, the method of Hanley and
McNeil [70] was used. The P value for comparing the area under the ROC curve of FREQ
versus AMPL was a two-tailed significance, whereas the P values for SI versus AMPL and
SI versus FREQ were one-tailed significances. Optimal threshold values were computed by
maximizing the sum of Se and Sp.

Results

The four different models of cardiac arrest did not show significantly different FREQ,
AMPL, or SI values (P > 0.5). Figure 10.2 shows the data distribution of the four mod-
els in the FREQ-AMPL plane.
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Figure 10.2: Data distribution for the four models of cardiac arrest in the mean frequency
(FREQ)/mean peak-to-trough amplitude (AMPL) plane.

The 24 animals receiving epinephrine and the 29 animals receiving vasopressin showed
significantly different FREQ, AMPL, and SI values (P < 0.0001). Figure 10.3 shows the
data distribution of epinephrine and vasopressin animals in the FREQ-AMPL plane.

Figure 10.4 shows the distribution of all ROSC and no-ROSC data in the FREQ-AMPL
plane. FREQ was capable of predicting defibrillation outcome well for values >8.10 Hz
(upper threshold) or values <6.80 Hz (lower threshold). AMPL was capable of predict-
ing defibrillation outcome well for values >0.24 mV (upper threshold) or values <0.13
mV (lower threshold). Between these upper and lower thresholds, FREQ and AMPL were
poorly predictive. Figure 10.5 shows the distribution of ROSC and noROSC data, the logis-
tic regression line, and threshold (P50), P5, and P95 for FREQ, AMPL, and SI, respectively.
Table 10.2 shows the estimates for the logistic regression fitting variables m and s together
with their SEs; normalized SEs of threshold values; and Ac, Se, Sp, PPV, and NPV regard-
ing FREQ, AMPL, and SI. All values for Ac, Se, Sp, PPV, and NPV of SI were superior
to FREQ or AMPL, resulting in 89% Se and 86% Sp. The predictive power of AMPL is
comparable to that of FREQ, but the normalized SE of the AMPL threshold is greater com-
pared with FREQ or SI. The ROC curves (Fig. 10.6) have been plotted by computing Se
and Sp of predicting ROSC/no ROSC with different thresholds for FREQ, AMPL, and SI.
The probabilities of predicting defibrillation outcome, i.e., the area under the ROC curve,
for FREQ, AMPL, and SI were 0.85 SE 0.05, 0.89 SE 0.05 and 0.90 SE 0.04, respectively.
The two-tailed P value for comparison of the areas under the ROC curve for AMPL versus
FREQ was 0.51. The one-tailed P values for SI versus FREQ and SI versus AMPL were
0.09 and 0.33, respectively. Optimal thresholds corresponding to ROC curve analysis for
FREQ, AMPL, and SI were 7.59 Hz, 0.13 mV, and 6.84, respectively.
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Figure 10.3: Data distribution of epinephrine and vasopressin animals in the mean fre-
quency (FREQ)/mean peak-to-trough amplitude (AMPL) plane.

Figure 10.4: Distribution of return of spontaneous circulation (ROSC; o) and no-ROSC (+)
data sets in the mean frequency (FREQ)/mean peak-to-trough amplitude (AMPL) plane.
Dashed lines are upper and lower thresholds for AMPL and FREQ, respectively. FREQ is
capable of predicting defibrillation outcome well for values >8.10 Hz (upper threshold) or
values <6.80 Hz (lower threshold). AMPL is capable of predicting defibrillation outcome
well for values >0.24 mV (upper threshold) or values <0.13 mV (lower threshold). The
solid line is the threshold for the survival index (SI) estimated by logistic regression.
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Figure 10.5: Distribution of return of spontaneous circulation (ROSC; o) and no-ROSC (+)
data for mean frequency (FREQ), mean peak-to-trough amplitude (AMPL), and survival
index (SI). For every ventricular fibrillation variable, the logistic regression (solid line),
threshold (P50; dashed line), P5 (dotted line), and P95 (dot and dash line) are displayed.

Table 10.2: Results of Logistic Regression Analysis

VF Variable Ac(%) Se(%) Sp(%) PPV(%) NPV(%)
FREQ 80 78 82 85 74
AMPL 78 78 79 82 73

SI 88 89 86 89 86

VF Threshold Steepness Normalized SE
Variable (m±SE) (s±SE) of threshold: SE/m
FREQ 7.54±0.28 Hz 1.09±0.29 Hz−1 0.04
AMPL 0.17±0.02 mV 17.04±4.20 mV−1 0.12

SI 7.43±0.36 1.00±0.22 0.05
Ac = accuracy; Se = sensitivity; Sp = specificity; PPV = positive predictive value

NPV = negative predictive value; FREQ = mean frequency

AMPL = peak-to-trough amplitude; SI = survival index; VF= ventricular fibrillation.
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Figure 10.6: Receiver operating characteristic (ROC) curves and corresponding optimal
thresholds for mean frequency (FREQ), mean peak-to-trough amplitude (AMPL), and sur-
vival index (SI).

Discussion

This analysis of different animal studies shows that FREQ, AMPL, and SI values, computed
shortly before the first defibrillation shock, were not significantly different in regard to the
four different cardiac arrest models. This legitimates the pooling of the data.

Many human and animal studies have shown that FREQ and AMPL are reliable vari-
ables for the prediction of defibrillation outcome [11]. In comparison with AMPL, FREQ
is independent of electrode contact quality, which makes FREQ more practicable and pre-
dictive in humans. In this study, FREQ and AMPL were both capable of predicting defibril-
lation outcome. Unfortunately, there is a range of FREQ and AMPL between an upper and
a lower threshold where prediction of ROSC or no ROSC is poor because of an overlap of
ROSC and no-ROSC data.

To improve this dilemma of a foggy prediction in some circumstances, we introduce
the SI, which corresponds to a new coordinate axis in the FREQ-AMPL plane by means
of linear transformation. By using multiple logistic regression analysis, we identified the
relevant coefficients of FREQ and AMPL in predicting defibrillation outcome, resulting in
the definition of SI. Univariate logistic regression and ROC curve analysis showed that SI
had a robust threshold value and predicted defibrillation outcome with better probabilities
compared with FREQ or AMPL alone.

There are more sophisticated (e.g., nonlinear) methods of combining FREQ and AMPL
to a new VF variable, which would probably perform better than SI. However, this would
likely lead to over-fitting of the 64 data points.

The P5 value of logistic regression for AMPL is negative (Fig. 10.5). This reflects a
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limitation of logistic regression when it is applied to data for which only positive values
make sense. A way out would be to work with the logarithm of AMPL values. However,
for the sake of mathematical comprehensibility, we accepted this inconsistency.

In this study, we chose the P50 value of logistic linear regression as the definition of
threshold value for a VF variable. One could also choose a different P value. ROC curve
analysis rendered slightly different optimal threshold values. Ultimately, an optimal thresh-
old value has to be defined according to clinical relevance.

Further analysis has to be performed to investigate whether CPR itself or additional drug
administration changes the pattern of VF by means of increased SI and a better probability
of ROSC. In fact, FREQ and AMPL served as noninvasive markers to monitor continuing
CPR efforts and were sensitive to the administration of vasopressin and epinephrine [7,
8]. In this study, which analyzes FREQ, AMPL, and SI values shortly before the first
defibrillation shock, we showed that animals receiving vasopressin showed significantly
higher FREQ, AMPL, and SI values than animals receiving epinephrine.

There are a number of studies that combine various variables of VF rather than com-
paring these variables. For example, Brown and Dzwonczyk [32] retrospectively analyzed
55 VF patients out of hospital, and they found that the combination of median and domi-
nant frequency improved predictive power when compared with the analysis of median fre-
quency alone. This group reported a Sp of 47% when the threshold value was set to yield a
sensitivity of 100%. Furthermore, Monsieurs et al. [108] combined amplitude and the num-
ber of baseline crossings per second in human VF into a survival index. With this index,
79% of the survivors and 70% of the nonsurvivors could be classified correctly; adding age
increased the correct classification of survivors to 86% and to 73% for the nonsurvivors.
In a laboratory study, Noc et al. [115] divided animals into a derivation and a validation
group. When mean amplitude and dominant frequency were combined, predictability was
improved compared with single use. In the validation group, defibrillation attempts were
uniformly unsuccessful if the combination of mean amplitude and dominant frequency did
not exceed the threshold values obtained in the derivation study. In the most recent inves-
tigation, Eftestol et al. [52] predicted defibrillation outcome by combining four spectral
features in VF ECG signals before 868 defibrillation attempts in 156 patients with out-of
hospital cardiac arrest. They split the data into training and test sets and used classifier
generalization techniques to increase the degree of expected reliability. Different secondary
decorrelated feature sets were generated from the four original features by using princi-
pal component analysis. Following the advice of the highest performing classifier, which
corresponded to the combination of 2 secondary features, 328 (42%) of 781 unsuccessful
shocks would have been avoided, whereas 7 (8%) of 87 successful shocks would not have
been given. Although it seems obvious that combining VF variables improves predictability
of successful defibrillation, it seems obvious as well that this approach still has significant
limitations. For example, it has to be noted that a 47% Sp, as observed in Brown and
Dzwonczyk’s study [32], is as good as flipping a coin; furthermore, if 8% of successful
shocks are withheld, as in the report of Eftestol et al. [52], efficiency of this strategy is
dissatisfying. Eftestol et al. recognized this problem as well and suggested that the low Sp
and PPV indicate that other features should be added; this may be extremely important in
humans undergoing CPR, because VF analysis in this setting is especially prone to chest
compression-related artifacts. In this context, the method of N(α)-histograms [9], which
does not use any filtering algorithm to eliminate the CPR artifacts, and other nonlinear VF
variables, as recently discussed in Amann et al. [11], could prove useful.

In conclusion, FREQ, AMPL, and SI values were not sensitive in regard to the four dif-
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ferent cardiac arrest models but were significantly different for vasopressin and epinephrine
animals. Further, we showed that a combination of FREQ and AMPL with a new predic-
tive variable, SI, leads to a better forecast of successful defibrillation compared with either
FREQ and AMPL alone.
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Abstract

We assessed the effects of a calcium channel blocker versus saline placebo on ventricular
fibrillation mean frequency and hemodynamic variables during prolonged cardiopulmonary
resuscitation (CPR). Before cardiac arrest, 10 animals were randomly assigned to receive
either nifedipine (0.64 mg/kg; n = 5) or saline placebo (n = 5) over 10 min. Immediately
after drug administration, ventricular fibrillation was induced. After 4 min of cardiac arrest
and 18 min of basic life support CPR, defibrillation was attempted. Ninety seconds after
the induction of cardiac arrest, ventricular fibrillation mean frequency was significantly
(P< 0.01) increased in nifedipine versus placebo pigs (mean ± SD: 12.4 ± 2.1 Hz versus
8 ± 0.7 Hz). From 2 to 18.5 min after the induction of cardiac arrest, no differences in
ventricular fibrillation mean frequency were detected between groups. Before defibrillation,
ventricular fibrillation mean frequency was significantly (P < 0.05) increased in nifedipine
versus placebo animals (9.7 ± 1.2 Hz versus 7.1 ± 1.3 Hz). Coronary perfusion pressure
was significantly lower in the nifedipine than in the placebo group from the induction of
ventricular fibrillation to 11.5 min of cardiac arrest; no animal had a return of spontaneous
circulation after defibrillation. In conclusion, nifedipine, but not saline placebo, prevented a
rapid decrease of ventricular fibrillation mean frequency after the induction of cardiac arrest
and maintained ventricular fibrillation mean frequency at ∼10 Hz during prolonged CPR;
this was nevertheless associated with no defibrillation success.

Introduction

Intracellular Ca2+ increases promptly with the induction of ventricular fibrillation [90].
This increase in intracellular Ca2+ is several times more than the peak systolic intracellular
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Ca2+ content during normal sinus rhythm and has important metabolic and mechanical
consequences. For example, a large concentration of intracellular Ca2+ increases activation
of enzymes that actively transport Ca2+ into the sarcoplasmic reticulum and mitochondria
[109, 123, 75], resulting in a significant intracellular energy deficit. Accordingly, calcium
channel blockers may preserve metabolic machinery and reduce the production of cerebral
catabolites, resulting in prolonged cell viability during global ischemia [145].

Although a randomized clinical trial using a calcium channel blocker in comatose sur-
vivors of cardiac arrest did not reveal beneficial effects of this drug with regard to neuro-
logic outcome during a 6-mo followup, it is possible that the treatment effect was simply
too small to be detectable in a clinical trial of only 520 cardiac arrest patients [29]. Also,
the calcium channel blocker was given after the return of spontaneous circulation, which
may have limited the protective effects on the cerebrum. Thus, if calcium overloading is
prevented early, beneficial effects may be more likely; further, if the goal of the treatment
strategy is not an extremely difficult target, such as preventing postcardiac arrest brain dam-
age, but a relatively simple one, such as protecting the fibrillating myocardium, the success
of a given study may be more likely. In fact, Martin et al. [104] showed that a calcium
channel blocker, but not saline placebo, maintained high ventricular fibrillation mean fre-
quency in a cardiac arrest model and facilitated defibrillation. However, they observed
this phenomenon only during the first 90 s of cardiac arrest, which may not be applicable
to cardiopulmonary resuscitation (CPR) in humans, in whom basic and advanced cardiac
life support are mostly initiated after approximately 5 min or even longer [74]. Thus, it is
unknown whether the underlying beneficial Ca2+ antagonist effect occurring 90 s after col-
lapse may be present later as well. More knowledge about this physiology may improve the
prediction of countershock success. Accordingly, the purpose of this study was to assess the
effects of a calcium channel blocker versus saline placebo on ventricular fibrillation mean
frequency and coronary perfusion pressure during prolonged CPR.

Methods

This project was approved by the Austrian Federal Animal Investigational Committee, and
the animals were managed in accordance with the American Physiological Society institu-
tional guidelines and the Position of the American Heart Association on Research Animal
Use, as adopted on November 11, 1984. Animal care and use were performed by qualified
individuals who were supervised by veterinarians, and all facilities and transportation com-
plied with current legal requirements and guidelines. Anesthesia was used in all surgical
interventions, all unnecessary suffering was avoided, and research was terminated if unnec-
essary pain or fear resulted. Our animal facilities meet the standards of the American Asso-
ciation for Accreditation of Laboratory Animal Care. This study was performed according
to Utstein-style guidelines [79] with 10 healthy, 12- to 16-wk-old swine weighing 30 to 40
kg. The animals were fasted overnight but had free access to water. The pigs were premed-
icated with azaperone (4 mg/kg IM) and atropine (0.1 mg/kg IM) 1 h before surgery, and
anesthesia was induced with propofol (12 mg/kg IV). After intubation during spontaneous
respiration, the pigs were ventilated with a volume-controlled ventilator (EV-A; Draeger,
Lübeck, Germany) with 35% oxygen at 20 breaths/min and with a tidal volume adjusted to
maintain normocapnia. Anesthesia was maintained with propofol (6 8 mg · kg−1 · h−1)
and a single injection of piritramide (30 mg) [155]. Muscle paralysis was achieved with
0.2 mg · kg−1 · h−1 of pancuronium after intubation. Ringer’s solution (6 mL · kg−1 · h−1)
and a 3% gelatin solution (4 mL · kg−1 · h−1) were administered in the preparation phase.
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A standard Lead III electrocardiogram (ECG) was used to monitor cardiac rhythm; depth
of anesthesia was judged according to blood pressure, heart rate, and electroencephalogra-
phy (Engström, Munich, Germany). If cardiovascular variables or electroencephalography
indicated a reduced depth of anesthesia, additional propofol and piritramide were given.
Body temperature was maintained between 38.0◦C (100.4◦F) and 39.0◦C (102.2◦F). A 7F
catheter was advanced into the descending aorta via femoral cutdown for withdrawal of
arterial blood samples and measurement of arterial blood pressure.

A 7.5F pulmonary artery catheter was placed via cutdown into the neck for measure-
ment of right atrial and pulmonary artery pressure. Blood pressure was measured with
a saline-filled catheter attached to a pressure transducer (Model 1290A; Hewlett-Packard,
Böblingen, Germany) that was calibrated to atmospheric pressure at the level of the right
atrium.

The ventricular fibrillation ECG signal (standard Lead III) and pressure tracings were
monitored continuously and recorded on hard disk by a computerbased data acquisition
system (Port 2000; Dewetron, Graz, Austria; and Datalogger [custom-made software]).
Digitization was performed at a sampling rate of 1000 Hz and with an amplitude resolution
of 12 bits (4096 equal steps between minimal and maximal amplitude). The recorded ECG
signals were analyzed by using the mathematical software package Matlab (Math Works
Inc., Natick, MA). The signals were divided into consecutive 10-s epochs; each epoch was
transformed into the frequency domain by Fourier transformation. To filter out CPR-related
artifacts, the frequency domain was restricted to the range from 4.33 to 30 Hz, as previously
described [138]. Mean fibrillation frequency for the 10-s epoch after 1.5, 7, 12, 18.5, and 22
min after the induction of cardiac arrest was calculated from the restricted spectrum. The
mean ventricular fibrillation peak-to-trough amplitude (difference between a peak and the
next trough of the ECG signal) was calculated at the same time segments as mean fibrillation
frequency.

Fifteen minutes before cardiac arrest, 5000 U of heparin was administered IV to pre-
vent intracardiac clot formation, and single doses of piritramide 0.8 mg/kg and pancuronium
0.2 mg/kg were given. Subsequently, 10 animals were randomly assigned to receive either
nifedipine (0.64 mg/kg; n = 5) [104] or saline placebo (n = 5) over 10 min (investigators
were blinded to the drugs). Immediately after drug administration, ventricular fibrillation
was induced with a 50-Hz alternating current applied via two subcutaneous needles, and
ventilation was stopped. After 4 min of untreated ventricular fibrillation, closed-chest stan-
dard CPR was performed, and ventilation was resumed with the same ventilator setting as
before the induction of cardiac arrest. Chest compressions were always performed by the
same investigator at a rate of 100/min, guided by acoustical audiotones. This investigator
was blinded to hemodynamic monitor tracings. Hemodynamic variables were measured
before the induction of cardiac arrest, as well as 1.5, 4.5, 8, 9.5, 13, 14.5, and 18 min after
initiation of CPR. After 22 min of cardiac arrest, including 18 min of standard CPR, we
attempted to restore spontaneous circulation with up to 5 countershocks (monophasic wave
forms) with an energy of 3, 4, and 6 J/kg, respectively. If asystole or pulseless electrical ac-
tivity was present after defibrillation, the experiment was terminated. Return of spontaneous
circulation was defined as an unassisted pulse with a systolic arterial pressure of more than
80 mm Hg for longer than 5 min. After the experimental protocol was finished, the animals
were killed with an overdose of potassium chloride and fentanyl; all pigs were necropsied
to check correct positioning of the catheters and damage to the rib cage and internal organs.

Values are expressed as mean ± SD. The comparability of weight and baseline data was
verified by using the unpaired Student’s t-test for continuous variables. To identify statis-
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tically significant differences of mean frequency, mean amplitude, and coronary perfusion
pressure between groups, one-way analysis of variance was used, followed by a nonpara-
metric Wilcoxon’s ranked sum test; all P values were corrected with the Bonferroni method
for multiple comparisons, and values of P < 0.05 were considered significant. The associ-
ation between coronary perfusion pressure and ventricular fibrillation mean frequency was
examined with linear regression analyses.

Results

After the induction of cardiac arrest, the ventricular fibrillation mean frequency was higher
in the nifedipine group than in the saline solution placebo group for approximately 2 min.
From 2 to 18.5 min after the induction of cardiac arrest, including 14.5 min of CPR, no dif-
ferences in ventricular fibrillation mean frequency could be detected. From 18.5 to 22 min
of cardiac arrest, the ventricular fibrillation mean frequency of the placebo group deterio-
rated, and the mean frequency in the nifedipine group remained higher (Fig. 10.7). Ninety

Figure 10.7: Mean ± SD ventricular fibrillation mean frequency in the nifedipine and
placebo groups during untreated cardiac arrest and basic life support cardiopulmonary re-
suscitation (CPR). NS = not significant for nifedipine versus placebo; VF ventricular fibril-
lation. *P < 0.01.

seconds after the induction of cardiac arrest, the ventricular fibrillation mean frequency was
12.4 ± 2.1 Hz in the nifedipine group versus 8.0 ± 0.7 Hz in the placebo group (P < 0.01)
and 9.7 ± 1.2 Hz versus 7.1 ± 1.3 Hz shortly before defibrillation (P < 0.05), respectively.
There were no significant differences in mean ventricular fibrillation peak-trough amplitude
before defibrillation. Coronary perfusion pressure was lower in the nifedipine than in the
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placebo group from the induction of ventricular fibrillation to 11.5 min of cardiac arrest.
From 11.5 to 22 min of cardiac arrest, coronary perfusion pressure in both groups was low
and comparable (Fig. 10.8). There was a correlation index of r = 0.99 in the placebo group

Figure 10.8: Mean ± SD coronary perfusion pressure of the nifedipine group versus the
saline placebo group during cardiac arrest. NS not significant for nifedipine versus placebo;
VF = ventricular fibrillation; CPR = cardiopulmonary resuscitation. *P < 0.01.

versus r = 0.15 in the nifedipine group between coronary perfusion pressure and ventric-
ular fibrillation mean frequency. No animal had a return of spontaneous circulation after
defibrillation; necropsy revealed proper instrumentation in all animals.

Discussion

Nifedipine, but not saline placebo, prevented a rapid decrease of ventricular fibrillation
mean frequency immediately after the induction of cardiac arrest and maintained the ven-
tricular fibrillation mean frequency at ∼10 Hz during prolonged CPR. However, the signifi-
cantly increased frequency values in the nifedipine group were not associated with increased
defibrillation success.

Our observation is in full agreement, with respect to time course of ventricular fib-
rillation mean frequency, with an earlier study by Martin et al. [104], who also injected
nifedipine during spontaneous circulation and then measured ventricular fibrillation mean
frequency during CPR. Although Martin et al.’s results with regard to ventricular fibrilla-
tion mean frequency in the first 2 minutes were almost identical to those of our study, we
continued the experiment for another 2 minutes of untreated ventricular fibrillation and, sub-
sequently, 18 minutes of basic life support CPR. In Martin et al.’s study, nifedipine seemed
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to have a beneficial effect on the fibrillating myocardium by maintaining the ventricular
fibrillation mean frequency on a high level and by prolonging the duration to convert ven-
tricular fibrillation into a spontaneous rhythm, and not pulseless electrical activity, from
∼60 to ∼90 seconds. This experience is in agreement with both laboratory and clinical
data, wherein high ventricular fibrillation mean frequencies correlated with high return of
spontaneous circulation rates [7, 135].

In previous studies, ventricular fibrillation mean frequency has been shown to corre-
late positively with coronary perfusion pressure [115]. Interestingly, we observed a high
mean frequency of ∼9 to ∼11 Hz during CPR in all nifedipine pigs, but coronary perfusion
pressure was comparably low, at ∼6 mm Hg. Accordingly, the correlation index between
ventricular fibrillation mean frequency and coronary perfusion pressure was approximately
-0.15 throughout the CPR interval, whereas this value was at an established level of 0.99
in the saline placebo pigs. We deliberately did not attempt to defibrillate the animals until
22 minutes into the experiment to measure ventricular fibrillation mean frequency. Because
of the prolonged interval of low coronary perfusion pressure, which may be at least partly
due to the antihypertensive effects of calcium channel blockade, it is not surprising that no
animal could be converted from ventricular fibrillation to return of spontaneous circulation.

In a previous study, a ventricular fibrillation mean frequency >8.4 Hz predicted suc-
cessful defibrillation with a sensitivity of 100% and a specificity of 80% [7]. Conversely,
although four of five nifedipine-treated animals had a ventricular fibrillation mean frequency
>8.4 Hz, none was successfully defibrillated. Without doubt, the negative correlation be-
tween ventricular fibrillation mean frequency and coronary perfusion pressure and, there-
fore, the insufficient predictability of defibrillation success with ventricular fibrillation anal-
ysis in this experiment were due to the administration of nifedipine. However, it is unlikely
that a calcium channel blocker such as nifedipine is a significant source of false-positive
ventricular fibrillation mean frequency values during CPR in humans. Nevertheless, the re-
sults of our experiment document that the present approach to analyzing ventricular fibrilla-
tion signals may be insufficient to adequately predict successful defibrillation. For example,
analysis of ventricular fibrillation mean frequency in one clinical study achieved a sensi-
tivity of only 73% and a specificity of only 67% [135], indicating that the move to >95%
predictability of successful defibrillation may require more information than ventricular fib-
rillation analysis is capable of providing. Mean peak-to-trough amplitude would be a good
predictive variable in our experiment; however, ventricular fibrillation amplitude depends
on the direction of the main fibrillation vector, and, therefore, there is great individual vari-
ety. Other strategies to solve this dilemma may be to use alternative methods of ventricular
fibrillation analysis, such as N(α) histograms [9], or other nonlinear modeling techniques
[128, 130]. Furthermore, combined use of ventricular fibrillation variables leads to an im-
proved forecast of defibrillation outcome, as we have shown in a previous study [12]. For
example, by using this new combination of mean frequency and amplitude (survival index)
[12], the specificity for prediction of successful defibrillation would be improved in this ex-
ample from 20% to 60%. However, both laboratory and clinical investigations would have
to confirm the possible value of these strategies.

There are several limitations to this study. First, the absolute values of ventricular fib-
rillation mean frequency differ significantly between animals and humans [103]. Also, we
used young, healthy pigs that were free of atherosclerotic disease. Because of design lim-
itations, we administered no vasopressor, which may have biased the results of ventricular
fibrillation mean frequency analysis. Also, it is not possible to administer a calcium channel
blocker before cardiac arrest. In conclusion, nifedipine, but not saline placebo, prevented
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a rapid decrease of ventricular fibrillation mean frequency after the induction of cardiac
arrest and maintained ventricular fibrillation mean frequency at ∼10 Hz during prolonged
CPR; this was nevertheless associated with no defibrillation success, which suggests that
ventricular fibrillation-derived variables predicting defibrillation success are dependent on
the study conditions.
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Part V

Defibrillator Waveform Analysis
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11.1 Overview

International guidelines of CPR recommend electrical defibrillation as a therapy for VF
[17, 18], because besides external thoracic compressions it is the only effective interven-
tion, which is proved to correlate with survival during CPR [16]. The time course of the
electrical current or voltage delivered by a defibrillator is called “waveform”. Different de-
fibrillation “waveforms” of the various manufacturers are still being discussed with respect
to their efficacy and harmfulness. All internal defibrillators and increasingly more external
defibrillators use biphasic waveforms. The following two papers present and discuss many
of the biphasic waveforms implemented in external defibrillators available on the market at
present.
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Abstract

Background and Objective: All internal defibrillators and some external defibrillators use
biphasic waveforms. The study analysed the discharged waveform pulses of two manual
and two semi-automated biphasic external defibrillators. Methods and Results: The defib-
rillators were discharged into resistive loads of 25, 50 and 100 Ω simulating the patient’s
transthoracic impedance. The tested biphasic defibrillators differed in initial current as well
as initial voltage, varying from 10.9 to 73.3 A and from 482.8 to 2140.0 V, respectively. The
energies of the manual defibrillators set at 100, 150 and 200 J deviated by up to + 19.1 or
- 28.9% from the selected energy. Impedance-normalised delivered energy varied from 1.0
to 12.5 J/Ω. Delivered energy, shock duration and charge flow were examined with respect
to the total pulse, its splitting into positive and negative phases and their impedance depen-
dence. For three defibrillators pulse duration increased with the resistive load, whereas one
defibrillator always required 9.9 ms. All tested defibrillators showed a higher charge flow
in the positive phase. Defibrillator capacitance varied between approximately 200 and 100
mF and internal resistance varied from 2.0 to 7.6 V. Defibrillator waveform tilt ranged from
-13.1 to 61.4%. Conclusions: The tested defibrillators showed remarkable differences in
their waveform design and their varying dependence on transthoracic impedance. Keywords:

Automated external defibrillator (AED); Cardiac arrest; Defibrillation; Emergency medical services; Manual

defibrillator; Transthoracic impedance

Introduction

Ventricular fibrillation is the principal cause of sudden cardiac arrest. The most effective
treatment for ventricular fibrillation is electrical defibrillation [18]. Besides performing
defibrillation at the earliest possible time, the waveform may also be crucial for success.
Presently the majority of external defibrillators use monophasic waveforms. In contrast to
external defibrillators, state-of-the-art internal defibrillators use biphasic truncated exponen-
tial waveforms [126] which have proved superior to monophasic waveforms [43, 57]. Pos-
itive evidence for safety and clinical effectiveness of biphasic truncated exponential wave-
forms for internal and external use was ascertained by the AHA ECC committee [18, 43].

Clinical studies [22, 23, 47, 64, 106, 107, 120, 156], reports [158] and animal experi-
ments [63, 96, 143, 147, 163] have shown at least equality between biphasic and monophasic

1Tel.: + 43-512-504 24636; fax: + 43-512-504 24683
2Corresponding author. Tel.: + 43-512-504 22400; fax: +43-512-504 22450.

E-mail addresses: anton.amann@uibk.ac.at (A. Amann), michael.baubin@uibk.ac.at (M. Baubin).
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waveforms for transthoracic defibrillation and transthoracic cardioversion. Biphasic wave-
forms offer the benefit of a lower defibrillation threshold; the risk of heart damage from
excessive pulse energy is thus lowered and the chance for successful defibrillation increases.

Using different waveforms and variable energy levels defibrillator manufacturers offer
various types of external defibrillators. This holds both for monophasic [4, 5] and biphasic
waveforms. The aim of the present laboratory study was to determine the energy content
of the discharge in comparison to the selected energy and to ascertain the actual discharge
waveform described by different characteristic parameters.

The discharged pulse energy and waveform of two manually biphasic external defibril-
lators (MCED) and two semi-automated biphasic external defibrillators (SAED) was anal-
ysed.

Materials and methods

Two MCED, the Medtronic Physio-Control LIFEPAK 12 (LIFEPAK 12) and the Zoll M-
Series Biphasic (M-Series), and two SAED, the Laerdal Heartstart ForeRunner (ForeRun-
ner) and the Survivalink FirstSave STAR (FirstSave), were tested. The MRL defibrillator
was not available to the authors.

The MCED provide a variety of shock energies from 2 to 360 J. The appropriate energy
is selected before defibrillation. The SAED, as first-responder devices, do not allow manual
selection of energy.

Pulse generation

According to the manufacturer’s manuals, three of the four tested defibrillators, LIFEPAK
12, ForeRunner and FirstSave, use a truncated exponentially decaying waveform (Fig. 11.1),
both for the positive and negative part of the biphasic waveform. These defibrillators store
their electrical energy in a capacitor which is charged to a certain voltage level according to
the required energy. Discharging a charged capacitor into a resistor results in an exponen-
tial decay of the shock waveform. To achieve a biphasic truncated exponentially decaying
waveform, the current of the capacitor discharge is switched off automatically after a certain
time (time of phase reversal). Then the current is reversed in polarity and switched on again
for a certain negative shock period.

In contrast, the M-Series defibrillator employs a serrated positive waveform phase and
an exponentially decaying negative waveform phase (Fig. 11.1). The serrated positive com-
ponent is brought about by adjusting the defibrillator’s internal resistance during the first
waveform phase.

The capacitor, the internal resistance, the waveformtruncating and phase-reversing tim-
ing circuit and the patient’s transthoracic impedance constitute the discharge circuit of the
four tested defibrillators. By changing the patient’s transthoracic impedance the charac-
teristics of the discharge circuit can be altered. Consequently, the patient’s transthoracic
impedance determines the waveform of the shock and thus its energy, initial voltage, pulse
duration and time of phase reversal.

In order to detect the patient’s transthoracic impedance the defibrillators may use manu-
facturer-dependent integrated measuring devices (patents: US 5645571, US 6047212, US
5230336, US 5431687, US 5800462, US 5904706, US 5111813, EP 315368, EP 457604;
[83]).
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Figure 11.1: Different biphasic defibrillation waveforms for resistive loads of 25, 50 and
100 Ω. An energy of 150 J was selected for the Medtronic Physio-Control LIFEPAK 12
and the Zoll M-Series Biphasic. The Laerdal Heartstart ForeRunner automatically delivers
an energy of approximately 150 J for any test resistor. For the Survivalink FirstSave STAR
the second shock after turning on the defibrillator was chosen, delivering mean energies
of 219.3 J (25 Ω), 194.2 J (50 Ω) and 165.0 J (100 Ω). The Medtronic Physio-Control
LIFEPAK 12, the Laerdal Heartstart ForeRunner and the Survivalink FirstSave STAR show
a biphasic truncated exponential waveform. The Zoll M-Series Biphasic shows a biphasic
truncated exponential waveform with serrated positive waveform phase.
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Waveform measurement

The defibrillators were discharged into resistive loads of 25, 50 and 100 Ω simulating the
patient’s individual transthoracic impedance, as described recently for monophasic defibril-
lators [4, 5]. The various loads were achieved by combining two resistors, a 1 Ω resistor
and an adjustable 1100 Ω resistor, in a series configuration providing voltage proportion-
ing. The voltage across the 1 Ω resistor was connected to a PC-based measurement system
(Dewetron, Graz, Austria). The waveform was digitised and stored at a sampling rate of 20
kHz and 16 bit amplitude resolution. Pulse amplitude resolution was better than 0.6 V or 6
mA for 100 Ω (12 mA for 50 Ω and 24 mA for 25 Ω).

The two MCED LIFEPAK 12 and M-Series were charged to selected energies of 100,
150 and 200 J and discharged into the different resistive loads. The two first responder
devices ForeRunner and FirstSave did not allow manual selection of energy.

Regular calibration guaranteed reliability and accuracy of the test resistors. Each test
was performed at least three times.

Data analysis

The recorded waveforms were analysed using mathematical software (MatLab 5.3, The
Mathworks Inc, Natick, MA).

The waveform energy content, impedance-normalised delivered energy, initial voltage
and initial current, waveform duration, charge flow as well as the tilt were calculated. The
impedance-normalised delivered energy is defined as the waveform energy content, i.e. the
total delivered energy, divided by the test resistance. The charge flow Q of a current pulse
I(t) is the integral

Q =
∫

I(t)dt

over the time of the shock. The tilt of a defibrillator’s pulse is defined as

(A−D)/A,

where A is the initial voltage (of the positive shock) and D is the absolute value of the
initial voltage of the negative shock. The initial voltage of the positive and negative pulse
is defined as the maximum voltage within the first millisecond of the positive and negative
pulse, respectively. The initial current was computed by dividing the initial voltage by the
test resistance, i.e. by applying Ohm’s law.

The energy discharged during the positive and the negative phase and their ratio to the
total discharged energy, the duration of the positive and the negative phase and their ratio to
the total duration, and the charge flow of the positive and the negative phase and their ratio
to the sum of both absolute values were computed. The absolute values are given as mean
± S.D.

Finally, the capacitor capacitance of three defibrillators was computed by fitting the
exponential decay of the negative pulse for different resistive loads. A charged capacitor
discharges into a series configuration of an internal resistor and a test resistor according to

U(t) = U(0)e−t/τ ,

where U(t) is the voltage across the test resistor t seconds after the beginning of the dis-
charge process. The time constant τ depends on the capacitor capacitance C, the internal
resistance Ri and the test resistance R via

τ = C(Ri +R).
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Fitting the exponential decay of the negative pulse yields the time constant τ . Assum-
ing the internal resistance Ri (and the capacitance C) to be constant for two different test
resistances R1 and R2, one can extract the capacitance C and the internal resistance Ri from
the two time constants τ1 and τ2, corresponding to R1 and R2, respectively:

C = (τ2− τ1)/(R2−R1) (11.1)

and

Ri = τ1/C−R1 = τ2/C−R2. (11.2)

For the LIFEPAK 12, the ForeRunner and the FirstSave calculations (11.2) and (11.2) were
made for all three combinations of the resistive loads 25, 50 and 100 Ω. Results are given as
mean± S.D. of these three values. The M-Series defibrillator changes its internal resistance
and therefore does not conform to the above requirements.

Results

The typical discharge waveforms at 25, 50 and 100 Ω are represented graphically in Figs.
11.1 and 11.2. The characteristic parameters describing the discharge waveforms are shown

Figure 11.2: Defibrillation waveforms for the Zoll M-Series Biphasic defibrillator for test
resistive loads of 25, 50 and 100 Ω and a selected energy of 200 J. In contrast to all other
configurations, the M-Series does not show the typical serrated positive waveform at an
energyimpedance configuration of 200 J and 100 Ω, using a truncated exponential waveform
instead.

in Tables 1 - 6. In Tables 1 - 5 the values depend on the various resistive loads and the
energy selected for the MCED. For the ForeRunner the values depend only on the various
resistive loads. For the FirstSave the values additionally depend on the number of shocks
already discharged after turning on the defibrillator. The values in Table 6 were computed
by combining the fitted time constants for different combinations of two resistive loads
using Eqs. (11.1) and (11.2). The values therefore depend on the selected energy regarding
the MCED and the number of shocks already discharged for the FirstSave.



11.2. PAPER 4 157

Discharge waveform (Figs. 1 and 2)

The LIFEPAK 12, the ForeRunner and the FirstSave use a biphasic truncated exponential
waveform (Fig. 1). The M-Series uses a biphasic truncated exponential waveform with ser-
rated positive waveform phase in all but one energy-impedance configurations (Fig. 1); at a
configuration of 100 Ω and 200 J the M-Series has an anomaly using a truncated exponential
waveform without the typical serrated positive waveform (Fig. 2).

Discharge energy (Table 1)

Generally, the MCED did not deliver the precise amount of energy that had been selected.
The delivered energies deviated from the selected energy by up to + 19.1 or -28.9%. The
LIFEPAK 12 always delivered less energy than selected, the M-Series less or more depend-
ing on the resistive load. The energy delivered by both MCED increased with increasing
resistive load. The energy delivered by the FirstSave decreased with increasing resistive
load and depended on the number of shocks discharged after turning on the defibrillator.
The ForeRunner automatically delivered an energy of approximately 150 J for any test re-
sistor.

In case of the MCED impedance-normalised delivered energy decreased with increas-
ing resistive load and increased with increasing selected energy as expected. Maximum and
minimum values were achieved by the LIFEPAK 12 defibrillator at 7.8 and 1.0 J/Ω, respec-
tively. For the SAED impedance-normalised delivered energy decreased with increasing
resistive load. The maximum value was achieved by the FirstSave (12.5 J/Ω) and the mini-
mum value by the ForeRunner defibrillator (1.5 J/Ω).

In general, more than 70% of the delivered energy was delivered in the first phase of the
shock. The LIFEPAK 12 shows energy splitting into approximately 88% for the positive
part and 12% for the negative part at 25 and 50 Ω and into 76 and 24% at 100 Ω independent
of the selected energy. The ForeRunner shows energy splitting into approximately 88 and
12%. The two remaining defibrillators show a variety of groupings in the energy splitting.

Initial voltage (Table 2a)

For all tested defibrillators initial voltage increased with the selected energy or the number
of shocks and with the resistive load. The values of the MCED showed a wide range,
whereas the values of the SAED showed a narrow range. Maximum and minimum values
were achieved by the M-Series defibrillator at 2140.0 and 482.8 V, respectively.

Initial current (Table 2b)

For all tested defibrillators initial current increased with the selected energy or the number
of shocks but decreased with the resistive load. The MCED values showed a narrow range,
whereas the SAED values showed a wide range. The maximum value was achieved by the
FirstSave (73.3 A) and the minimum value by the LIFEPAK 12 defibrillator (10.9 A).

Pulse duration (Table 3)

Generally, total pulse duration was independent of the selected energy or the number of
shocks. For all but the M-Series defibrillator total pulse duration increased with the resistive
load. The M-Series pulse always required 9.9 ms.
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The LIFEPAK 12 and the M-Series showed a constant duration splitting of 5638 and
6040%, respectively. Duration splitting depended on the resistive load for the SAED. In
general, the first positive pulse was longer than the second negative pulse.

Charge flow (Table 4)

For the MCED total charge flow increased with the selected energy and decreased with the
resistive load. No rule could be determined for the SAED. Overall, the total charge flow is
positive, i.e. the first phase carries more charge than the second phase of the shock. None
of the tested defibrillators therefore showed a balanced charge flow. The maximum value
was achieved by the LIFEPAK 12 (129.0 mC) and the minimum value by the M-Series
defibrillator (33.4 mC).

Splitting of the charge flow into the first and second phases occurred independently of
the selected energy for the LIFEPAK 12 and independently of the number of shocks for the
FirstSave and showed different groupings for both defibrillators. Generally, more than 64%
of the charge was delivered in the first phase.

Tilt (Table 5)

Roughly speaking, the tilt did not depend on the selected energy or the number of shocks
and varied from 61.4% for the ForeRunner to -13.1% for the M-Series defibrillator. The tilt
of the LIFEPAK 12 and the FirstSave decreased with the resistive load, whereas the tilt of
the M-Series increased with the resistive load.
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Capacitance and internal resistance (Table 6)

The LIFEPAK 12 showed a capacitance of approximately 200 µF, which demonstrates the
slow exponential decay of the waveform pulse (Fig. 1). The two SAED showed a capac-
itance of approximately 100 µF, resulting in a faster exponential decay of the waveform
pulse (Fig. 1). For all three defibrillators the computed internal resistances were not negli-
gible in comparison with the resistive loads.

Discussion

The waveforms of four different biphasic defibrillators were analysed. It was found that
there are significant differences in the delivered discharge waveforms. The tested defib-
rillators use different capacitors and different internal resistors, resulting in a varying time
constant of exponential decay. The LIFEPAK 12, the ForeRunner and the FirstSave use a
biphasic truncated exponential waveform with a time gap between the first and the second
phases, whereas the M-Series defibrillator achieves a serrated positive waveform by adjust-
ing the internal resistor in time and does not show any time gap between the first and the
second phase.

In the case of the two defibrillators with manually selectable energy (LIFEPAK 12
and M-Series), the delivered energy deviated substantially from the selected energy. The
LIFEPAK 12 always delivered less energy than selected, the M-Series less or more depend-
ing on the resistive load. One of the two semi-automated defibrillators (ForeRunner) always
delivered approximately the same amount of energy, the other one (FirstSave) discharged
different energies depending on the number of shocks discharged after turning on the de-
fibrillator. The energy delivered by both MCED increased with increasing resistive load,
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whereas the energy delivered by the FirstSave decreased with increasing resistive load.
Impedance-normalised delivered energy of the two SAED varied from 1.5 to 12.5 J/Ω.

In comparison, patent US 5111813 proposed a defibrillation protocol with recommended
impedance-normalised delivered energy values between 3 and 4.5 J/Ω based on a study of
human defibrillation using damped sinusoidal waveform shocks [84].

Generally, the initial voltage increased and the initial current decreased with the re-
sistive load. Apart from the anomaly of the M-Series defibrillator at an energyimpedance
configuration of 200 J and 100 Ω, the serrated positive waveform pulse of this defibrillator
produced the lowest values for initial voltage and the second lowest value for initial current.

The LIFEPAK 12, the M-Series and the FirstSave adjust the amount of energy stored
in the capacitor. The capacitor of the ForeRunner defibrillator always charged to approx-
imately the same value, (Table 2b) taking the internal resistance into account. The tilt
differed considerably among the tested defibrillators varying from - 13.1 to 61.4% and de-
pended differently on the resistive load. Negative tilt occurs when the initial voltage of the
positive phase is smaller than the absolute value of the initial voltage of the negative phase.
All negative values were achieved with the M-Series defibrillator.

Concerning total phase duration, all but the M-Series defibrillator showed impedance-
adjusted values.

Generally, biphasic defibrillators split their shock into a positive and a negative phase.
All tested defibrillators showed greater values for the characteristic parameters of the first
phase. Again, some defibrillators used a constant splitting ratio for certain characteristic
parameters. None of the tested defibrillators showed a balanced charge flow.

The defibrillators tested in this study do not comprise all biphasic defibrillators in clini-
cal use. This study was a theoretical lab study, thus the different waveforms or the defibril-
lators for possible efficacy were not assessed.

The various parameters chosen to describe the defibrillator waveforms are not indepen-
dent in general. Initial voltage U and initial current I are related by Ohm’s law U = I ·R
to the patient’s transthoracic impedance R. On the other hand, charge flow Q and energy E
are not proportional because Q =

∫
I(t)dt and E =

∫
I(t)2Rdt are integral quantities over a
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chosen time interval.
Usually, defibrillation is achieved by successful selection of energy, either manually or

automatically. The energy chosen and the patient’s individual transthoracic impedance de-
termine the current through the heart. The average adult human impedance is approximately
70 80 Ω[83]. According to the AHA guidelines ‘ventricular fibrillation and other cardiac
arrhythmias can be terminated by electric shock when sufficient current passes through the
myocardium’ [18]. A promising alternative approach to defibrillation is therefore the use
of electric current and charge flow instead of energy. Current-based therapy would pre-
vent attempts to deliver inappropriately low energies to a patient with high impedance, and
would prevent high-energy shocks to patients with low impedance, which result in excessive
current flow, myocardial damage and failure to defibrillate [18, 83, 84].

Furthermore, possible new technical developments must also be considered. Triphasic
waveforms and the use of two separate capacitors for biphasic waveforms are interesting
approaches in this connection [77, 164, 165].

This study illustrates the differences in the waveform design and the varying depen-
dence of the waveform characteristic parameters on the patient’s transthoracic impedance.
Optimal waveform and optimal impedance compensation for biphasic defibrillation have
not yet been determined [18, 61].
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Abstract

Background and Objective: Modern defibrillators use biphasic waveforms. The aim of the
present laboratory study was to determine the discharge waveforms and their characteristic
parameters of three manually controllable biphasic external defibrillators. Methods and Re-
sults: The defibrillators were charged to energies of between 100 and 200 J and discharged
into resistances of between 25 and 100 Ω, simulating transthoracic impedance. While two of
the tested defibrillators showed traditional biphasic truncated exponentially decaying wave-
forms generated by a single capacitor and of varying duration, one defibrillator applied a
chopped waveform at 5 kHz of constant duration using a single capacitor for each phase.
Delivered energy, current, pulse duration, and charge flow were examined with respect to
the total pulse and its splitting into positive and negative phases. Two defibrillators showed
constant energy splitting and constant charge flow splitting. Conclusions: At comparable
settings for selected energy and resistance the waveforms of the tested defibrillators showed
remarkable differences.

Keywords: Cardiac arrest; Defibrillation; Emergency medical services; Manual defibrillator; Transthoracic

impedance

Introduction

Almost half of the patients with out-of-hospital cardiac arrest suffer from ventricular fibril-
lation [56]. The most effective treatment for ventricular fibrillation is electrical defibrillation
[17]. In recent years the body of evidence supporting the efficacy and safety of defibrillators
using biphasic waveforms has increased dramatically, and more and more manufacturers
offer defibrillators, some of which have very different biphasic waveforms. Monophasic
shocks are recommended to be administered at increasing energy levels of 200 J, 200 J
(ERC) or 300 J (AHA), and 360 J [17]. A review of evidence concluded that nonescalating
low-energy biphasic shocks achieved clinical outcomes equivalent to those of monopha-
sic shocks [43]. State-of-the-art implantable defibrillators use biphasic waveforms [126],
which have proved superior to monophasic waveforms [43, 57].

The current study is a follow-up analysis of a previous work done by our group [6],
where we determined the discharge waveforms and their characteristic parameters of four

1Corresponding author. Tel.: + 43-512-504 24636; fax: +43-512-504 24683.
E-mail addresses: anton.amann@uibk.ac.at
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manually controllable biphasic external defibrillators (MCED). In the meantime two more
MCEDs have become available to us and we improved our measurement setup. This study
therefore completes and updates [6] with measurements of two new MCEDs and by cor-
recting previously published data of the Medtronic Physio-Control Lifepak 12 defibrillator.
In this connection we would like to clarify that, in contrast to [6], the Survivalink FirstSave
STAR defibrillator utilises two separate capacitors with capacitances of 205 and 110 µF for
the positive and negative phase, respectively.

Materials and Methods

The methods, especially the selected impedance values, of this study were deliberately taken
over from [6] in order to assure the comparability of the results with the earlier tested defib-
rillators.

Three manually controllable biphasic external defibrillators were tested: the Medtronic
Physio-Control Lifepak 12 (LP12), the MRL PIC (MRL), and the Schiller FRED biphasic
(FRED). These defibrillators provide a variety of pulse energies, from which 100, 150, and
200 J were selected for the LP12 and MRL, and 110, 150, and 180 J for the FRED, since
100 and 200 J were not selectable for this defibrillator.

Pulse generation

The LP12 and MRL defibrillators use biphasic truncated exponentially decaying wave-
forms, which are generated by capacitors with nominal capacitances of 200.9 µF and 500
µF , respectively. The FRED defibrillator uses a biphasic truncated exponentially decaying
waveform, which is chopped at 5 kHz. For each waveform phase a separate capacitor with
a nominal capacitance of 30 µF is used (Figs. 11.3 and 11.4).

Waveform measurement

The LP12 and the MRL defibrillator were discharged into resistive loads of 25, 50, and 100
Ω, simulating patients’ various transthoracic impedances. The FRED defibrillator was not
dischargeable into resistive loads smaller than 31 Ω, and therefore resistive loads of 31, 50,
and 100 Ω were chosen for this defibrillator. For the LP12 defibrillator, the wires of the pads
were cut and connected directly to the resistive loads. The paddles of the MRL defibrillator
and the pads of the FRED defibrillator were attached to two metal plates, which were con-
nected to the resistive loads.3 The discharge voltage curve was recorded with a PC-based
data acquisition system (National Instruments AT-MIO-16XE-50; and Datalogger, custom
made software) using two high resistances (1 MΩ, 2.27 kΩ) in a parallel configuration (Fig.
11.5). The resistive loads and the voltage measurement had a maximum error of ±1 Ω and
±1%, respectively. The discharge waveforms were digitised and stored at a sampling rate
of 200 kHz and 16-bit amplitude resolution. Regular calibration guaranteed reliability and
accuracy of the measurement setup. Each test was performed at least three times.

Data analysis

The recorded discharge waveforms were analysed using mathematical software (MatLab
6.5, The Mathworks Inc, Natick, MA).

3The above-described measurement setup for the LP12 defibrillator was chosen, because the delivered en-
ergies matched the selected energies slightly better as compared to using paddles or pads.
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Figure 11.3: Discharge waveforms for each tested defibrillator at 150 J and 25(31), 50, and
100 Ω. Please note that the time axis for the FRED defibrillator was chosen differently in
order to display the chopped pulse properly.
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Figure 11.4: Discharge waveforms at 150 J and 25(31), 50, and 100 Ω for all tested defib-
rillators.
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Figure 11.5: Measurement setup: The resistance of the parallel connection (1 MΩ and 2.27
kΩ) does not significantly affect the overall resistance of the circuit

The energy content of the positive and the negative waveform phase, their ratio, the
total delivered energy and its percentage deviance from the selected energy were calculated
using the energy formula

E =
1
R

∫
U(t)2dt, (11.3)

where U(t) is the discharge voltage as a function of time, R is the chosen resistance, and the
integral is to be taken over the time interval of interest. The mean and edge currents of the
positive and negative waveform phase were calculated by dividing the respective voltage
values by the resistances. The duration of the positive and the negative waveform phases,
their ratio, and the total pulse duration were calculated. Finally, the charge flow of the
positive and the negative waveform phases (Q1 and Q2), their ratio, the total charge flow,
and the Q1/Q2 ratio were calculated using the charge flow formula

Q =
1
R

∫
U(t)dt. (11.4)

The absolute values are given as mean ± S.D., and the ratios are given as mean values of
at least three tests. Figure 11.6 depicts some of the parameters calculated for the LP12
waveform at 150 J and 50 Ω as an example.

Results

The typical current discharge waveforms for 150 J and various resistances are represented
graphically in Figs. 11.3 and 11.4. The values of the characteristic parameters describing
the discharge waveforms at the various energies and resistances are shown in Tables 1 - 4.
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Figure 11.6: Some of the calculated parameters for the LP12 waveform at 150 J and 50 Ω:
mean current of the positive (PM) and negative phase (NM), start (PS) and end (PE) edge
current of the positive phase, start (NS) and end (NE) edge current of the negative phase,
duration of the positive (D1) and negative phase (D2), duration of the total pulse (Dtotal), and
the charge flow of the positive (Q1) and negative phase (Q2), i.e. the area under the current
waveform of the positive and negative phase, respectively, cf. charge flow formula (11.4).
Note that the energy content of the waveform can not be illustrated, cf. energy formula
(11.3).
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Discharge waveform (Figs. 11.3 and 11.4)

The LP12 and MRL defibrillators show typical biphasic truncated exponentially decay-
ing waveforms with impedance-dependent durations. The FRED defibrillator applies a
chopped biphasic truncated exponentially decaying waveform of an impedance-indepen-
dent, i.e. constant, duration. In contrast to the LP12 and MRL defibrillators, the start
current of the negative phase does not equal the end current of the positive phase, which re-
flects the fact that the FRED uses a separate capacitor for each phase. The different decaying
characteristics of the three defibrillators reflect the capacitance of their different capacitors.
The FRED defibrillator applies an apparently higher peak current as compared to LP12 and
MRL.

Energy (Table 1)

The maximum error for the resistive loads (±1 Ω) and the voltage measurement (±1%)
gives a maximum error for the calculated energy of approximately ±6, ±5, ±4, and ±3%
for 25, 31, 50, and 100 Ω, respectively. Assuming no further measurement errors, the LP12
defibrillator always delivered the selected energy within this measurement accuracy, the
MRL defibrillator exceeded the measurement tolerance slightly for 100 Ω, and the FRED
defibrillator delivered the selected energy for 50 Ω, but delivered approximately 9% too
much for 31 Ω and approx. 20% too little for 100 Ω.The LP12 defibrillator showed a
variable energy splitting dependent on the resistive load. The MRL and FRED defibrillators
showed a constant energy splitting of 75% - 25% and 89% - 11%, respectively.

Table 1

Mean ratio of the energies of the positive and negative waveform phase together with the
absolute values, the total delivered energy (TDE) and the percentage deviance of the
selected energy (DEV)1.

Selected Test resistive load
energy 25 (31) Ω 50 Ω 100 Ω

(J)2 Positive Negative Positive Negative Positive Negative
Physio-Control-Lifepak12
100 88(84.2±0.0) 12(11.5±0.0) 82(82.4±0.0) 18(18.1±0.0) 76(77.4±0.4) 24(24.4±0.0)

TDE: 95.7±0.0 DEV: -4.3±0.0 TDE: 100.5±0.0 DEV: 0.5±0.0 TDE: 101.8±0.4 DEV: 1.8±0.4
150 88(126.3±0.2) 12(17.5±0.1) 82(123.8±0.0) 18(27.1±0.0) 76(116.5±0.0) 24(36.5±0.0)

TDE: 143.8±0.1 DEV: -4.1±0.1 TDE: 150.9±0.0 DEV: 0.6±0.0 TDE: 153.0±0.0 DEV: 2.0±0.0
200 88(169.0±0.1) 12(23.2±0.0) 82(165.7±0.1) 18(36.1±0.0) 76(154.9±0.0) 24(48.8±0.0)

TDE: 192.2±0.1 DEV: -3.9±0.1 TDE: 201.7±0.1 DEV: 0.9±0.0 TDE: 203.7±0.0 DEV: 1.8±0.0
MRL-PIC
100 75(71.1±0.5) 25(24.1±0.2) 75(73.4±0.1) 25(24.3±0.1) 75(71.1±0.2) 25(23.3±0.1)

TDE: 95.2±0.4 DEV: -4.8±0.4 TDE: 97.7±0.2 DEV: -2.3±0.2 TDE: 94.4±0.3 DEV: -5.6±0.3
150 75(107.5±0.2) 25(36.3±0.1) 75(109.8±0.8) 25(36.8±0.2) 75(106.6±0.2) 25(35.1±0.1)

TDE: 143.8±0.3 DEV: -4.1±0.2 TDE: 146.6±0.6 DEV: -2.3±0.4 TDE: 141.7±0.2 DEV: -5.5±0.2
200 75(142.2±0.4) 25(48.1±0.0) 75(146.6±0.8) 25(48.8±0.1) 75(142.2±0.6) 25(46.8±0.2)

TDE: 190.4±0.3 DEV: -4.8±0.2 TDE: 195.5±0.9 DEV: -2.3±0.4 TDE: 189.1±0.6 DEV: -5.5±0.3
Schiller-FRED
110 89(106.7±0.1) 11(13.1±0.0) 89(99.4±0.1) 11(12.2±0.0) 89(79.0±0.1) 11(9.6±0.0)

TDE: 119.7±0.1 DEV: 8.8±0.1 TDE: 111.5±0.1 DEV: 1.4±0.1 TDE: 88.6±0.1 DEV: -19.4±0.1
150 89(145.7±0.2) 11(17.4±0.1) 89(135.8±0.0) 11(16.2±0.0) 89(108.4±0.6) 11(12.9±0.1)

TDE: 163.1±0.2 DEV: 8.7±0.1 TDE: 152.0±0.0 DEV: 1.4±0.0 TDE: 121.3±0.7 DEV: -19.1±0.5
180 89(174.4±0.1) 11(20.5±0.1) 89(162.2±0.3) 11(19.0±0.1) 90(128.5±0.4) 10(15.1±0.0)

TDE: 194.9±0.2 DEV: 8.3±0.1 TDE: 181.2±0.4 DEV: 0.7±0.2 TDE: 143.5±0.5 DEV: -20.3±0.3
1 The absolute values and the percentage deviance are given as mean ± S.D.
2 Mean ratio of the energies of the positive and negative waveform phase, absolute values, TDE and DEV [%(J), J, %]
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Current (Table 2)

The FRED defibrillator showed apparently higher peak current values but similar mean
current values as compared to the LP12 and MRL defibrillators. For the LP12 and MRL
defibrillators the start current of the negative phase equaled the end current of the positive
phase. For the FRED defibrillator the start current of the negative phase equaled approxi-
mately one-third of the start current of the positive phase. All tested defibrillators showed
current values that increased with increasing selected energy and decreasing resistive load.

Table 2

Peak edge currents and mean currents of the positive and negative waveform phase given
as mean ± S.D. [A]

Selected Test resistive load
energy 25 (31) Ω 50 Ω 100 Ω

(J) Positive Negative Positive Negative Positive Negative
Physio-Control-Lifepak12
100 start: 35.3±0.0 start: -14.3±0.0 start: 19.8±0.0 start: -10.3±0.0 start: 11.0±0.0 start: -7.0±0.0

end: 14.6±0.0 end: -8.0±0.0 end: 10.4±0.0 end: -6.7±0.0 end: 7.0±0.0 end: -5.2±0.0
mean: 23.6±0.0 mean: -10.9±0.0 mean: 14.6±0.0 mean: -8.4±0.0 mean: 8.9±0.0 mean: -6.1±0.0

150 start: 43.3±0.0 start: -17.5±0.1 start: 24.2±0.0 start: -12.7±0.0 start: 13.5±0.0 start: -8.6±0.0
end: 17.9±0.1 end: -9.7±0.1 end: 12.7±0.0 end: -8.2±0.0 end: 8.6±0.0 end: -6.3±0.1
mean: 28.9±0.0 mean: -13.3±0.1 mean: 17.9±0.0 mean: -10.3±0.0 mean: 10.8±0.0 mean: -7.4±0.0

200 start: 50.1±0.0 start: -20.2±0.0 start: 28.0±0.0 start: -14.6±0.0 start: 15.6±0.0 start: -10.0±0.0
end: 20.6±0.0 end: -11.1±0.0 end: 14.7±0.0 end: -9.4±0.0 end: 10.0±0.0 end: -7.4±0.0
mean: 33.4±0.0 mean: -15.2±0.0 mean: 20.6±0.0 mean: -11.8±0.0 mean: 12.6±0.0 mean: -8.6±0.0

MRL-PIC
100 start: 30.3±0.0 start: -22.0±0.1 start: 15.5±0.0 start: -11.4±0.0 start: 7.9±0.0 start: -5.9±0.0

end: 21.5±0.1 end: -16.2±0.8 end: 11.1±0.0 end: -9.1±0.1 end: 5.8±0.0 end: -4.7±0.1
mean: 25.8±0.0 mean: -20.0±0.1 mean: 13.3±0.0 mean: -10.4±0.0 mean: 6.8±0.0 mean: -5.4±0.0

150 start: 37.1±0.0 start: -27.0±0.0 start: 19.0±0.0 start: -13.9±0.0 start: 9.6±0.0 start: -7.2±0.0
end: 26.1±0.2 end: -19.6±1.2 end: 13.7±0.1 end: -11.0±0.3 end: 7.1±0.0 end: -5.3±0.3
mean: 31.6±0.0 mean: -24.5±0.0 mean: 16.3±0.0 mean: -12.8±0.0 mean: 8.3±0.0 mean: -6.7±0.0

200 start: 42.7±0.0 start: -31.1±0.0 start: 21.9±0.0 start: -16.1±0.0 start: 11.1±0.0 start: -8.3±0.0
end: 30.0±0.2 end: -20.2±1.4 end: 15.7±0.0 end: -11.5±0.5 end: 8.2±0.0 end: -6.4±0.4
mean: 36.4±0.0 mean: -28.2±0.0 mean: 18.7±0.0 mean: -14.7±0.0 mean: 9.6±0.0 mean: -7.7±0.0

Schiller-FRED
110 start: 86.0±0.0 start: -29.9±0.0 start: 53.8±0.0 start: -18.7±0.0 start: 27.1±0.0 start: -9.4±0.0

end: 11.3±0.0 end: -4.0±0.0 end: 14.8±0.0 end: -5.2±0.0 end: 14.3±0.0 end: -5.0±0.0
mean: 18.5±0.0 mean: -6.5±0.0 mean: 15.2±0.0 mean: -5.4±0.0 mean: 10.1±0.0 mean: -3.5±0.0

150 start: 100.5±0.1 start: -34.5±0.1 start: 62.8±0.0 start: -21.6±0.0 start: 31.7±0.1 start: -10.9±0.1
end: 13.2±0.0 end: -4.6±0.0 end: 17.4±0.0 end: -6.0±0.0 end: 16.7±0.0 end: -5.8±0.0
mean: 21.7±0.0 mean: -7.5±0.0 mean: 17.8±0.0 mean: -6.2±0.0 mean: 11.8±0.0 mean: -4.1±0.0

180 start: 109.8±0.1 start: -37.5±0.0 start: 68.6±0.1 start: -23.4±0.0 start: 34.5±0.1 start: -11.8±0.0
end: 14.5±0.0 end: -5.0±0.0 end: 19.0±0.0 end: -6.5±0.0 end: 18.2±0.0 end: -6.2±0.0
mean: 23.7±0.0 mean: -8.2±0.0 mean: 19.5±0.0 mean: -6.7±0.0 mean: 12.9±0.0 mean: -4.4±0.0

Duration (Table 3)

Generally, total pulse duration was independent of the selected energy. For both the LP12
and MRL defibrillator total pulse duration increased with the resistive load. The FRED
pulse always required 8.1 ms. The LP12 and MRL defibrillators applied a longer positive
phase, whereas the FRED pulse showed balanced duration splitting.

Charge flow (Table 4)

The absolute charge flow values generally increased with increasing selected energy. At
fixed energy selection, the absolute charge flow of the positive phase was approximately
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Table 3

Mean ratio of positive and negative waveform phase duration together with the absolute
values and the total pulse duration.1

Selected Test resistive load
energy 25 (31) Ω 50 Ω 100 Ω

(J)2 Positive Negative Positive Negative Positive Negative
Physio-Control-Lifepak12
100 55(5.7±0.0) 37(3.7±0.0) 56(7.5±0.0) 38(5.1±0.0) 57(9.7±0.1) 38(6.5±0.1)

Total: 10.2±0.0 Total: 13.3±0.0 Total: 17.0±0.1
150 55(5.6±0.0) 37(3.8±0.0) 56(7.5±0.0) 38(5.1±0.0) 57(9.7±0.0) 38(6.6±0.0)

Total: 10.3±0.0 Total: 13.3±0.0 Total: 17.1±0.0
200 55(5.7±0.0) 37(3.9±0.0) 56(7.5±0.0) 38(5.1±0.0) 57(9.6±0.0) 38(6.5±0.0)

Total: 10.3±0.0 Total: 13.4±0.0 Total: 17.0±0.0
MRL-PIC
100 59(4.2±0.0) 33(2.4±0.0) 62(8.3±0.0) 34(4.5±0.0) 64(15.3±0.1) 33(7.9±0.1)

Total: 7.2±0.0 Total: 13.3±0.0 Total: 23.7±0.3
150 59(4.2±0.0) 33(2.4±0.0) 62(8.2±0.1) 34(4.5±0.0) 64(15.2±0.1) 33(7.8±0.0)

Total: 7.2±0.0 Total: 13.3±0.1 Total: 23.6±0.1
200 59(4.2±0.0) 33(2.4±0.0) 62(8.3±0.0) 34(4.5±0.0) 65(15.3±0.1) 33(7.8±0.1)

Total: 7.2±0.0 Total: 13.3±0.0 Total: 23.7±0.2
Schiller-FRED
110 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0)

Total: 8.1±0.0 Total: 8.1±0.0 Total: 8.1±0.0
150 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0)

Total: 8.1±0.0 Total: 8.1±0.0 Total: 8.1±0.0
180 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0) 48(3.9±0.0)

Total: 8.1±0.0 Total: 8.1±0.0 Total: 8.1±0.0
1 The remaining percentage of waveform duration separates positive and negative waveform phases.
The absolute values are given as mean ± S.D.
2 Mean ratio of the positive and negative waveform phase duration, absolute values and total pulse duration [%(ms), ms]

constant for the MRL defibrillator. Overall, the total charge flow was positive, i.e. the
positive phase carried more charge than the negative phase. The LP12 defibrillator showed
variable Q2/Q1 ratios dependent on the resistive load, whereas the MRL and FRED defib-
rillators always applied an approximately constant Q2/Q1 ratio.

Discussion

A previous study investigated traditional and rectilinear biphasic truncated exponentially
decaying waveforms [6]. The present study completes and updates that work showing the
different biphasic waveform designs of three defibrillator manufacturers by comprising the
parameters energy, current, duration and charge flow.

In contrast to the LP12 and MRL defibrillators, which apply traditional biphasic trun-
cated exponentially decaying waveforms of similar characteristic parameters, the waveform
design of the FRED defibrillator has several different features. The FRED defibrillator ap-
plies a chopped waveform and uses a single capacitor for each phase. It has a fixed pulse
duration just as the Zoll M-Series Biphasic [6]. One possible way of comparing the chopped
FRED waveform with the continuously decaying waveforms of LP12 and MRL would be to
use the local mean amplitude of the FRED discharge waveform, which has approximately
half amplitude. In contrast to the LP12 defibrillator, the MRL and FRED defibrillators
showed both constant energy splitting and constant charge flow splitting.
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Table 4

Mean ratio of the charge flows of the positive and negative waveform phase together with
the absolute values, the total charge flow and the Q2/Q1-ratio.1

Selected Test resistive load
energy 25 (31) Ω 50 Ω 100 Ω

(J)2 Positive Negative Positive Negative Positive Negative
Physio-Control-Lifepak12
100 77(133.6±0.0) 23(-40.9±0.0) 72(108.9±0.0) 28(-42.5±0.0) 68(85.8±0.6) 32(-39.8±0.1)

Total: 92.7±0.0 Q2/Q1: 30.6±0.0 Total: 66.4±0.0 Q2/Q1: 39.0±0.0 Total: 46.0±0.4 Q2/Q1: 46.4±0.2
150 76(163.3±0.4) 24(-51.1±0.0) 72(133.4±0.0) 28(-52.0±0.0) 68(105.5±0.0) 32(-48.8±0.0)

Total: 112.1±0.4 Q2/Q1: 31.3±0.1 Total: 81.5±0.0 Q2/Q1: 39.0±0.0 Total: 56.7±0.0 Q2/Q1: 46.2±0.0
200 76(189.2±0.1) 24(-59.0±0.0) 72(154.7±0.0) 28(-60.0±0.0) 68(121.2±0.0) 32(-56.2±0.0)

Total: 130.2±0.0 Q2/Q1: 31.2±0.0 Total: 94.7±0.0 Q2/Q1: 38.8±0.0 Total: 65.0±0.0 Q2/Q1: 46.4±0.0
MRL-PIC
100 69(108.9±0.9) 31(-47.8±0.2) 70(109.5±0.1) 30(-46.6±0.2) 71(103.9±0.6) 29(-42.8±0.4)

Total: 61.1±1.1 Q2/Q1: 43.9±0.5 Total: 62.9±0.2 Q2/Q1: 42.5±0.2 Total: 61.1±0.2 Q2/Q1: 41.2±0.2
150 70(134.4±0.1) 30(-58.6±0.1) 70(133.7±1.1) 30(-57.3±0.2) 71(126.9±0.4) 29(-52.3±0.2)

Total: 75.7±0.0 Q2/Q1: 43.6±0.0 Total: 76.4±1.3 Q2/Q1: 42.8±0.5 Total: 74.6±0.4 Q2/Q1: 41.2±0.1
200 70(154.5±0.3) 30(-67.6±0.1) 70(155.0±0.6) 30(-66.0±0.1) 71(147.0±0.4) 29(-60.5±0.5)

Total: 87.0±0.4 Q2/Q1: 43.7±0.1 Total: 89.0±0.5 Q2/Q1: 42.6±0.1 Total: 86.5±0.4 Q2/Q1: 41.2±0.3
Schiller-FRED
110 74(71.7±0.0) 26(-25.2±0.0) 74(59.1±0.0) 26(-20.7±0.0) 74(39.1±0.0) 26(-13.7±0.0)

Total: 46.5±0.0 Q2/Q1: 35.2±0.0 Total: 38.3±0.0 Q2/Q1: 35.1±0.0 Total: 25.4±0.0 Q2/Q1: 35.0±0.0
150 74(83.9±0.0) 26(-29.2±0.0) 74(69.1±0.0) 26(-24.0±0.0) 74(45.8±0.1) 26(-15.9±0.1)

Total: 54.7±0.0 Q2/Q1: 34.7±0.0 Total: 45.1±0.0 Q2/Q1: 34.7±0.0 Total: 30.0±0.0 Q2/Q1: 34.6±0.1
180 74(91.8±0.0) 26(-31.6±0.0) 74(75.5±0.1) 26(-26.0±0.0) 74(49.9±0.1) 26(-17.1±0.0)

Total: 60.2±0.0 Q2/Q1: 34.4±0.0 Total: 49.5±0.0 Q2/Q1: 34.4±0.0 Total: 32.8±0.1 Q2/Q1: 34.3±0.0
1 The absolute values and the Q2/Q1 ratio are given as mean ± S.D.
2 Mean ratio of the charge flows of the positive and negative waveform phase duration, absolute values,
total charge flow and the Q2/Q1 ratio [%(mC), mC, %]

Theory

Discussions about exponentially decaying discharge waveforms, no matter whether they
are monophasic, biphasic, or additionally chopped, use and sometimes even confuse quite a
number of terms, such as energy, current and charge flow. We aim to clarify the mathemat-
ical relationship between these parameters, taking as archetypical example a capacitor with
capacitance C, which is discharged with initial current I0 into resistance R for duration T .
The discharge current and discharge voltage are I(t) = I0e−

t
RC and U(t) = U0e−

t
RC , respec-

tively, where U0 = I0R according to Ohm’s Law. The energy E delivered during time T can
be calculated as

E =
∫ T

0
U(t)I(t)dt =

CU2
0

2
(1− e−

2T
RC ) =

CR2I2
0

2
(1− e−

2T
RC ), (11.5)

and the charge flow Q during time T can be calculated as

Q =
∫ T

0
I(t)dt = CU0(1− e−

T
RC ) = CRI0(1− e−

T
RC ).

Combining these two results gives

E = U0Q− Q2

2C
=

Q2

C(1− e−
T

RC )
− Q2

2C
=

Q2

2C
coth(

T
2RC

) (11.6)

These formulas reflect the generally non-linear relationships among various types of quan-
tities, namely the integral quantities energy and charge flow, the time-dependent quantities
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discharge current and discharge voltage, the pulse design parameters C, T , and U0, and
the patient’s impedance R. Specifically, formula (11.6) shows that the same charge flow Q
can be achieved with different energies E depending on the duration T of the pulse. This
archetypical example considers only the first phase of a biphasic truncated exponentially
decaying waveform, but the respective formulas for (chopped) biphasic truncated exponen-
tially decaying waveforms follow easily.

Energy vs. Current

Based on the law of electrostimulation [81], the AHA/ERC guidelines state that ’defibrilla-
tion is accomplished by passage of sufficient electric current (amperes) through the heart’
[17]. Concurrently, the operation of MCEDs, the recommended defibrillation algorithms
and most of the studies are energy-based. However, this study and the above considerations
show that the electric current depends on more parameters than energy alone and can there-
fore be very different for the same energy. This obvious discrepancy between the theory and
practice of defibrillation most likely has technical and historical reasons, and the AHA/ERC
guidelines further state that ’a promising alternative approach to defibrillation is the use of
electric current (amperes) instead of energy (joules)’.

Energy and (peak-) current are independent parameters of a defibrillation waveform,
i.e. the same energy can be delivered with different currents (cf. formula (11.5)). Our
measurements illustrate this fact, e.g. Fig. 11.4 shows the current curves of the different
defibrillators at 150 J. Thus, even high energy biphasic defibrillation is associated in some
waveforms with moderate peak current (a factor of interest for damage).

Optimal waveform

Unfortunately, there is no generally valid model of defibrillation, from which a patient’s
optimal biphasic defibrillation waveform can be derived. The diversity in the waveform
design of the various manufacturers reflects this fact. The two crucial questions are: which
waveform parameters in which combination are relevant for the efficacy of a defibrilla-
tion waveform, and which waveform parameters reflect the extent of functional and mor-
phological damage to the heart? Most publications about the design of a waveform re-
fer to the Weiss-Lapicque strength-duration relationship and the charge-burping theory
[81, 60, 93, 164, 142, 146, 162], while e.g. Geddes et al. [61] use the Q2/Q1 ratio.
Niebauer et al. [111] showed that at least part of the myocardial depression following a
single monophasic pulse defibrillation was caused by the release of K+ from the myocar-
dial cells, which was linearly proportional to the charge delivered to the heart. Xie et al.
[161] showed that the magnitude of myocardial dysfunction was related in part to the en-
ergy delivered during electrical defibrillation. On the other hand, Lumb et al. [101] showed
that at equivalent energy levels a truncated exponential waveform caused significantly less
myocardial damage than did a damped sine waveform with a higher peak current. It thus
appears that research has not yet determined the optimal defibrillation waveform.

Limitations

The defibrillators tested in this study do not comprise all biphasic external defibrillators in
clinical use, nor were the efficacy and safety of the tested defibrillators assessed. In this
theoretical lab study the patient’s transthoracic impedance was simulated with resistances
of 25, 31, 50, and 100 Ω.



11.3. PAPER 5 175

Acknowledgements

We wish to thank Kenneth F. Olson, Cardiac Science Inc., and Joe Sullivan, Medtronic
Physio-Control, for their helpful correspondence in order to revise some results of our pre-
vious publication.



176 CHAPTER 11. (UN)PUBLISHED PAPERS



List of Some Important
Abbreviations

ACF autocorrelation function
ACLS advanced cardiac life support
AED automated external defibrillator
AHA American heart association
ALR adaptive lagged regression
ATS adaptive time-dependent seasonal
BLS basic life support
CPP coronary perfusion pressure
CPR cardiopulmonary resuscitation
ECG electrocardiogram
EMD electromechanical dissociation
FS sampling frequency
IID independent identically distributed
LAMP Linux Apache MySQL PHP (or Perl, or Python)
MLE maximum likelihood estimation
MMSE minimum mean squared error
MSE mean squared error
NSR normal sinus rhythm
OLS ordinary least squares
PEA pulseless electrical activity
ROC receiver operating characteristic
rSNR restored signal-to-noise ratio
ROSC return of spontaneous circulation
SCA sudden cardiac arrest
SI survival index
SNR signal-to-noise ratio
TS time series
VF ventricular fibrillation
VT ventricular tachycardia
WN white noise
XML extendible markup language
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feb. 1999 - jan. 2000 civil service at the hospital of Innsbruck
13.4.2000 final diploma examination with distinction
june 2000 - now doctoral thesis (Ph.D.) with Prof. Anton Amann at the

Department of Anesthesiology and Critical Care Medicine.
2002 - feb. 2004 coorganisation of the study Defibrillation in out-of-hospital

cardiac arrest patients: a comparison of the mono- and
biphasic defibrillation pulses of MRL

feb. 2004 - now research assistant and assistant lecturer at the
Research Center for Process and Product Engineering,
University of Applied Sciences Vorarlberg.

181



182 LIST OF PUBLICATIONS



List of Publications

Theoretical Physics
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