Schriftliche Abschlussprüfung zu Förderung individueller Kompetenzen: Mathematik

- Dauer der Prüfung: 90 Minuten (bis maximal 120 Minuten)
- Erlaubte Hilfsmittel: Taschenrechner, selbstgeschriebene Formelsammlung
- Schreiben Sie Ihren vollständigen Namen auf den Prüfungsbogen
- Lösen Sie alle Aufgaben direkt auf dem Prüfungsbogen

Name:	
Personenkennzeichen:	

Aufgabe	Erreichbare Punkte	Erreichte Punkte
1	20	
2	12	
3	8	
4	12	
5	12	
6	12	
7	10	
8	14	
Gesamt	100	

1. Lineare Algebra 1 (20 Punkte):

(a) Überprüfen Sie anhand der Determinante, für welche Werte von a die nachfolgenden Vektoren linear abhängig sind (8 Punkte)?

$$\vec{v_1} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad \vec{v_2} = \begin{pmatrix} -a\\2\\5 \end{pmatrix} \qquad \vec{v_3} = \begin{pmatrix} -2\\a\\7 \end{pmatrix}$$

- (b) Geben Sie ein Gleichungssystem in Matrixform an, welches 4 Gleichungen, 3 Unbekannte und keine Lösung besitzt. Geben Sie auch den Rang der einfachen und der erweiterten Koeffizientenmatrix an (3 Punkte).
- (c) Geben Sie ein Gleichungssystem in Matrixform an, welches 3 Gleichungen und 3 Unbekannte besitzt und dessen Lösungsraum der \mathbb{R}^2 ist. Geben Sie auch den Rang der einfachen und der erweiterten Koeffizientenmatrix an (3 Punkte).
- (d) Zeichnen Sie die Konturlinien der Funktion $f: \mathbb{R}^2 \to \mathbb{R}: f(x) = 2x_1 2x_2$. Bringen Sie die lineare Funktion in die Form $f(x) = \vec{c}^T \vec{x}$. Wie müssten sich die Werte des Koeffizientenvektors \vec{c} verändern, damit die Konturlinien der gezeichneten Funktionswerte näher zusammenrücken (6 Punkte)?

Personenkennzeichen:

2. Lineare Algebra 2 (12 Punkte):

Ein Autoverleih besitzt in Vorarlberg zwei Standorte: Dornbirn und Feldkirch. Zum betrachteten Zeitpunkt stehen 100 Autos in Dornbirn und 140 Autos in Feldkirch. Die Autos können an beiden Standorten retourniert werden. Im Schnitt werden 10 % der Autos, die in Dornbirn ausgeliehen werden, in Feldkirch retourniert und 30 % der Autos, die in Feldkirch ausgeliehen werden, in Dornbirn retourniert.

- (a) Geben Sie die Übergangsmatrix \mathbf{M} an $(\vec{x}_1 = \mathbf{M} \cdot \vec{x}_0)$, die die dynamische Entwicklung der vorhandenen Autos an den beiden Standorten beschreibt (3 Punkte).
- (b) Analysieren Sie anhand der Eigenwerte das dynamische Systemverhalten. Falls sich ein Gleichgewicht einstellt, ermitteln Sie die Gleichgewichtsaufteilung \vec{x}_{∞} der Leihautos auf die Standorte über die Eigenvektoren des relevanten Eigenwerts (9 Punkte).

Personenkennzeichen:

3. Regression (8 Punkte):

Ein Polynom 2. Grades der Form $y=ax^2+bx+c$ soll durch die gegebenen Messdaten gefittet werden:

X	\mathbf{y}
0	-2
1	1
2	$3,\!8$
3	9,4
4	15
5	22,3
6	31

Formulieren Sie das Ordinary Least Squares - Problem in Matrixform für den besten Fit durch die Datenpunkte. Verwenden Sie die dabei die Zahlenwerte der gegebenen Messdaten.

Personenkennzeichen:

4. Mehrdimensionale Differentialrechnung (12 Punkte):

Gegeben ist ein Hohlzylinder mit dem Innenradius $r_{\rm i}=6$ cm, dem Außenradius $r_{\rm a}=10$ cm und der Höhe h=20 cm. Berechnen Sie mithilfe des totalen Differentials die Volumenänderung, die dieser Zylinder erfährt, wenn die Größen $r_{\rm i}$, $r_{\rm a}$ und h wie folgt verändert werden: $\Delta r_{\rm i}=0.2$ cm, $\Delta r_{\rm a}=-0.4$ cm und $\Delta h=0.7$ cm. Vergleichen Sie Ihr Ergebnis mit der exakten Differenz des Volumens.

Hinweis: $V = (r_{\rm a}^2 - r_{\rm i}^2) \cdot \pi \cdot h$

Personenkennzeichen:

5. Mehrdimensionale Funktionen (12 Punkte):

(a) Gegeben ist das Vektorfeld

$$\vec{F} = \left(\begin{array}{c} -y \\ x \end{array} \right)$$

Skizzieren Sie das Vektorfeld und berechnen Sie die Rotation des Vektorfelds (6 Punkte).

(b) Gegeben ist das Skalarfeld

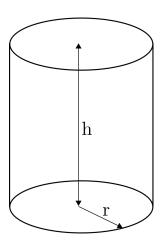
$$\phi(x, y, z) = x^2 \cdot e^{y \cdot z} + y \cdot z^3$$

Berechnen Sie den Gradienten des Skalarfelds. Geben Sie dann den Betrag des Gradientenvektors $|\nabla \phi|$ im Punkt P=(2,0,1) an (6 Punkte).

Personenkennzeichen:

6. Nichtlineare Optimierung (12 Punkte):

Die Wärmeverluste eines zylindrischen Warmwasserspeichers sollen minimiert werden. Über die Mantelfläche gehen $40~{\rm W/m^2}$ verloren und über die Deck- und die Grundfläche jeweils $20~{\rm W/m^2}$. Der Warmwasserspeicher besitzt ein Volumen von π m³. Wie sind Radius und Höhe zu wählen, um den Wärmeverlust \dot{Q} zu minimieren? **Hinweis:** $V_{\rm zyl} = r^2 \pi h$; $A_{\rm zyl,mantel} = 2r\pi h$; $A_{\rm zyl,df,gf} = r^2 \pi$



Personenkennzeichen:

7. Arbeitsintegrale (10 Punkte):

Gegeben ist das Differential $(4y^3 - 3x) \cdot dx + (12xy^2 - 4) \cdot dy$.

- (a) Zeigen Sie rechnerisch, dass zu diesem Differential eine Stammfunktion existiert (3 Punkte).
- (b) Bestimmen Sie die Stammfunktion (7 Punkte).

Personenkennzeichen:

8. Differentialgleichungen (14 Punkte):

- (a) Lösen Sie die Differentialgleichung $y' \cdot (1+x^3) = x^2 y$ durch Separation der Variablen (6 Punkte).
- (b) Gegeben sei das Anfangswertproblem: y'' + 6y' + 9y = 0 mit y(0) = 1 und y'(0) = 1. Klassifizieren Sie die Differentialgleichung bezüglich Homogenität, Ordnung und Linearität. Handelt es sich um eine gewöhnliche Differentialgleichung? Lösen Sie anschließend das Anfangswertproblem und geben Sie die partikuläre Lösung an (8 Punkte).